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ABSTRACT

The genus Helianthus is both economically important and genetically diverse. 
It contains two important crop species H. annuus and H. tuberosus in addition 
to being a model for evolutionary studies. The large number of species 
within the genus and the ability to hybridize makes the use of crop wild 
relatives as sources of novel phenotypes particularly promising as a way 
to introduce novel variation. Additionally, the promiscuity of genus allows 
for an understanding of the genome dynamics within and between ploidy 
levels at many different evolutionary distances. Helianthus is an excellent 
system to study how hybridization canbe used to explore the utilization of 
wild germplasm in crop improvement and how it led to the creationof hybrid 
sunflower industry. New mating designs and technology combined with the 
need to develop crops resilient to changing environments will increase the 
value of wild germplasm. 

Introduction

Plant Genetic Resources: Crop Wild Relatives

Crop plants often are less resistant to biotic and abiotic stresses than their 
wild relatives. The loss of resistance accompanying crop domestication 
and improvement is hypothesized to be a by-product of selection for yield 
under ideal conditions. This hypothesis is based on reports of trade-offs 
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between plant productivity and stress resistance (e.g. Mayrose et al. 2011). 
In addition, population bottlenecks during domestication and improvement 
have likely lead to the stochastic loss of resistance alleles in crop germplasm 
(Tanksley and McCouch 1997). The loss of stress resistance in crops, coupled 
with reduced diversity of crop gene pools, has become especially worrying 
recently as we attempt to increase crop productivity in the face of climate 
change, rapid population growth, and heightened competition for land and 
water (McCouch et al. 2013; Dempewolf et al. 2014; Gentzbittel et al. 2015). 
 One approach to minimize yield losses caused by environmental stress 
is to breed cultivars that combine high yield with resistance to biotic and 
abiotic stress. However, such breeding efforts require access to resistant 
germplasm, which may not exist in the cultivated gene pool. On the other 
hand, such resistance often resides in the wild relatives of crop plants, which 
often thrive under stressful conditions (Ricklefs and Jenkins, 2011; Thormann 
et al. 2012). While the genes and mutations underlying stress resistance can 
be obtained through genetic engineering, it is typically cheaper and less 
technologically challenging to obtain them through sexual hybridization and 
introgression. For hybridization to be useful to humans, crops must be cross-
compatible with their wild relatives, hybrids must have non-zero fitness, 
and agronomically valuable alleles must be present in the wild background 
(Burke and Arnold, 2001; Rieseberg, 1997; Arias and Rieseberg, 1995). Indeed, 
many different crop wild relative species meet these criteria, and both intra- 
and interspecific hybridization has been employed to transfer useful traits 
into many different crop plants (reviewed in Hajjar and Hodgkin, 2007). In 
this chapter, we discuss how hybridization has been (or could be) employed 
to aid crop improvement in the genus Helianthus, which contains two crops: 
the diploid sunflower (Helianthus annuus L.) and the hexaploid Helianthus 
tuberosus L. (2n = 6x = 102). 

Definitions

The term hybridization can be restricted to offspring formed by matings 
between species, or defined more broadly as the offspring of individuals 
from genetically differentiated populations. We prefer the second, broader 
definition for two reasons. First, it avoids issues with species definitions. 
Second, it is consistent with the plant breeding literature, in which 
hybridization is typically employed to describe crosses within the species, 
while wide hybridization is generally used to refer to crosses between 
different species. Likewise, introgression can be narrowly defined as the 
transfer of genes or traits between species via backcrossing, or more broadly 
as the sexual transfer of genetic material between genetically distinguishable 
populations. Again, we prefer the broader definition since it provides greater 
flexibility in usage.
 Traditionally wild plant species related to cultivated species, i.e. crop 
wild relatives (CWR), have been placed in groups based on their crossing 
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relationship with the crop. The primary germplasm have no crossing 
barriers with the crop producing fully fertile progeny, the secondary 
germplasm produce hybrids with some meiotic abnormalities (due to 
chromosome translocations etc. that influence F1 meiosis but not viability 
or hybridization), the tertiary germplasm requires special techniques (e.g. 
embryo rescue, protoplast fusion) to produce hybrids, and within the 
quaternary germplasm hybrids cannot be produced via sexual or somatic 
means, although genetic introgressions can be achieved using recombinant 
DNA technology recombinant DNA technology (Harlan and De Wet, 1971; 
Harlan, 1976; Gepts 2000). 

Helianthus

Helianthus is native to North America and contains 52 species (67 total taxa) 
(Marek and Seiler, 2011; Kane et al. 2013), occupying diverse ecological niches 
across much of North America including deserts, marshes and open plains. 
Helianthus is a promiscuous genus with many species readily hybridizing 
within and between ploidy levels. Hybridization and introgression appear 
to have facilitated colonization of diverse environments (Whitney et al. 
2006, 2010; Thompson et al. 1981; Rogers et al. 1982). The two Helianthus 
crops originated from different sections within the genus. Sunflower arose 
within the annual section Helianthus, centered in central and western North 
America, while H. tuberosus is an autoallohexaploid from the perennial 
section Divaracatus, centered in northeastern North America. 

Sunflower Domestication and Improvement

The process of domestication involves both the elimination of unwanted 
traits, and the development of traits that facilitate cultivation and improve 
yield. These two overlapping aspects of domestication transform plants from 
their natural forms to new and distinguishable types. Improvement refers to 
the phenotypic changes wrought by modern breeding, which may overlap 
with those sought by early farmers. Modern breeders typically target yield 
and quality traits, traits that confer resistance to biotic or abiotic stress, and 
traits that confer adaptation to local environments or that optimize crops for 
particular uses. 
 While it is clear that artificial selection (both conscious and unconscious) 
drives phenotypic evolution during domestication and improvement, the 
role of controlled crosses (both within and between species) in domestication 
is less clear. However, the use of controlled crosses is a critical component 
of modern breeding programs. Sunflower (H. annuus) offers an especially 
compelling example of the value of wide hybridization in crop improvement.
 Sunflower (2n = 2x = 34) was domesticated in eastern North America 
approximately 4000 years ago (Harter et al. 2004, Blackman et al. 2011) in 
present day states of Arkansas, Kentucky, Illinois and Tennessee (Smith, 
2006; Smith 2013). ‘Wild’ traits that were eliminated during sunflower 
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domestication include branching, seed shattering, self-incompatibility and 
extended dormancy. Traits bred by early farmers to facilitate harvesting 
and enhance yield include increased seed size, increased oil content and 
adjustment of flowering time (Harlan et al. 1973; Burke et al. 2002a; Harter  
et al. 2004; Seiler and Jan, 2010; Blackman et al. 2011). 
 At the time of European contact, sunflower played a significant role 
in North American agriculture and was associated with many different 
Native American tribal nations (Sturtevant 1885; Jenks 1916; Jones et al. 1933; 
Thone 1936; Heiser, 1951; Heiser 1955; Kaplan 1963; Wasley 1962; Fritz 1990). 
Sunflower is often present in North American folklore (Heiser, 1951), and 
was of particular importance to the tribal nations of the American Southwest 
(Navajo, Apache, Pueblo and Hopi), figuring prominently in their folklore 
(Wallis 1936; Yarnell 1965; Minnis 1989). There were many regional and use-
specific landraces (Nabhan and Richhardt, 1983); for example, the desert 
dwelling Hopi tribe bred sunflowers that produced specific dyes (Heiser 
1951; Willis et al. 2010). Additionally, sunflower was part of traditional 
polycultures in the American Southeast (Scarry and Scarry 2005), with its 
complex agricultural systems continuing in modern times, particularly in 
organic farming systems (Jones and Gillett 2005). 
 Sunflower was introduced to Europe in the sixteenth century as an 
ornamental plant (Heiser 1955) and was further improved for oil content 
during the nineteenth century in Russia. Sunflower robustness in adverse 
environments was recognized, which enhanced its cultivation in wide range 
of environments around the globe (Hanna 1924, Shantz 1940). However, as 
alluded to above, domestication and improvement is typically accompanied 
bya reduction in genetic variation due to intensive inbreeding and selection, 
leading to increased vulnerability of cultivated varieties to environmental 
stresses, diseases and pests (Rieseberg et al. 1995; Harter et al. 2004). In 
sunflower, the cultivated genepool is estimated to include approximately 
67% of the diversity present in wild populations of its progenitor, common 
sunflower (also H. annuus) (Lui and Burke 2006; Kolkman et al. 2007; Mandel 
et al. 2011). The relatively high proportion of genetic variation remaining in 
the cultivated gene pool is due in part to purposeful introgressions from the 
wild (Seiler, 1991a; Seiler, 1991b; Seiler, 1991c; Seiler and Marek, 2011; Baute  
et al. 2015). 
 Sunflower is currently cultivated on ~26 million hectares worldwide 
(FAO Stat), ranking second among hybrid crops in area harvested (Singh et 
al. 2007) and 13th among all crops. Commercial oilseed varieties dominate 
cultivation (75-90% of production) due to high demand for low trans-fat, high 
oleic vegetable oil (Berglund 2007). The biodiesel and direct consumption 
markets are smaller but still of economic value. Sunflower production in 
2013 was 44.75 million metric tons worldwide and 0.92 million metric tons 
in U.S. (FAO stat). Over the last twenty years there has been an increase in 
sunflower production worldwide (Khoury et al. 2014) due to increases in 
both production area and productivity per hectare (Berglund 2007). 
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Domestication and Improvement of Jerusalem Artichoke

The second Helianthus crop is the hexaploid Jerusalem artichoke (H. tuberosus). 
Helianthus tuberosus displays a domestication syndrome consistent with 
tuber crops, where tuber number is reduced, individual tuber size increases 
and there is a more synchronous transition to reproduction. Helianthus 
tuberosus is native to central North America (Kays and Nottingham, 2008; 
Rogers et al. 1982) and was domesticated in the eastern United States prior to 
European contact. Helianthus tuberosus is an autoallohexaploid whose diploid 
progenitors are H. divaricatus and H. grosseserratus (Bock et al. 2014; Kostoff, 
1934; Kostoff, 1939; Scibria, 1938). Levels of genetic diversity in the cultivated 
gene pool relative to that found in its wild progenitor (also H. tuberosus) are 
unknown.
 The crop was first introduced to Europe in the early 17th century, 
where it was an immediate success among the royal court of France, quickly 
becoming an important food source among the European aristocracy: 
traveling in quick succession from France to Italy, to the Netherlands and 
then to England (Kays and Nottingham, 2008). In fact, extensive cultivation 
guides were published in the mid-18th century (Brookes, 1763). Jerusalem 
artichoke production continued to increase for ~200 years until it was largely 
replaced by potato production in the mid-19th century. However, the crop 
retained an important place in many European culinary traditions, with 
spikes in cultivation occurring at different times during different periods of 
history, for example during World War II (Kays and Nottingham, 2008). 
 The tubers have excellent nutritional properties and are a favorite 
in gourmet cooking, with some of the first recorded recipes emerging 
in England in the seventeenth century (Kays and Nottingham, 2008). In 
addition to food, proposed uses of JerusalemArtichoke include industrial (i.e. 
for rubber; Seiler et al. 1991), biofuel (Seiler and Campbell, 2006; Rodrigues  
et al. 2007), medicinal (i.e. inulin from tubers can be used treating diabetes; 
Kays and Nottingham, 2008), and as a forage crop (Seiler and Campbell, 
2004). However, many of the desirable compounds are present at very low 
concentrations, making production economically unfeasible (Seiler et al. 
1991). 
 When commercially produced, the crop is grown as a winter or summer 
annual. Production has fluctuated between food and forage production, 
with recent interest developing in biofuel production. Despite its widespread 
use there has been little information obtained on the genetics of wild  
H. tuberosus. Additionally, as far as we are aware, there has been little 
intentional interspecific introgression into domesticated H. tuberosus. 

Gene Flow Between Wild and Cultivated Populations

Gene flow between wild and cultivated sunflowers occurs frequently as 
crop fields and wild Helianthus are often adjacent to one another (Burke  
et al. 2002b; Arias and Rieseberg, 1994). Most of the gene flow is with wild 
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populations of H. annuus, but limited introgression has been observed with 
a related species, H. petiolaris, as well (Rieseberg and Kim, 1998). Gene flow 
is mainly from cultivated into wild populations, and cultivated alleles can 
persist for decades in wild or weedy populations (Snow et al. 1998; Whitton 
et al. 1997; Cummings et al. 2002). The mixed growth forms resulting from 
such admixture are sometimes observed in cultivated fields and can hurt 
production (Lu et al. 2013). With that said, significant care is taken to eliminate 
wild populations from areas of seed production. Thus, the influence of 
this unintended crop-wild gene flow on the genomic composition of the 
cultivar appears to be limited (Baute et al. 2015). Indeed, all domesticated 
sunflowers form a distinct lineage compared to wild relatives, with wild 
H. annuusmaking a fairly small direct contribution to domestic genomes 
(Mercer et al. 2006; Snow et al. 2003; Harter et al. 2004; Wills and Burke, 2006; 
Mandel et al. 2011; Baute et al. 2015). 

How Can We Utilize Hybridization Within Helianthus?

Hybridization can be used in several ways. First, as discussed above, it 
offers a means for accessing agronomically valuable genetic variation, 
especiallydisease resistance alleles. Second, hybridization can reveal 
useful cryptic variation present in wild or cultivated germplasm. For many 
traits, individuals carry alleles with opposing effects (Tanksley, 1993). The 
existence of these alleles can be exposed by creating hybrid populations, 
potentially leading to extreme phenotypes, in a phenomenon referred to 
as transgressive segregation (Rieseberg et al. 2003; Nolte and Tautz, 2010; 
Mao et al. 2011; Dittrich-Reed and Fitzpatrick, 2013). Lastly, alleles derived 
through hybridization can mask deleterious alleles in cultivated lines, 
potentially leading to heterotic effects (Springer and Stupar, 2007; Birchler et 
al. 2010; Mezmouk and Ross-Ibarra, 2014). Below we describe some of these 
potential uses in Helianthus, drawing on examples from both natural and 
artificial hybridization experiments. We also describe potential barriers to 
introgression such as chromosomal rearrangements, and potential ways to 
overcome these barriers.

Hybridization in Nature

Interspecific hybridization and introgression permits large portions of the 
genome to change simultaneously, potentially facilitating rapid divergence 
or adaptation. Interspecific gene flow within Helianthus is common (Heiser 
1947, 1951; Stebbins and Daly, 1961; Heiser, 1978), and the transfer of alleles 
between species has been shown to affect phenotype and fitness (Whitney 
et al. 2006, 2010). Studies of natural hybrids in the genus have provided 
insights into the genetics of adaptation, especially with respect to the roles 
of transgressive segregation and chromosomal rearrangements in ecological 
divergence (Strasburg et al. 2011; Sambatti and Rice, 2006; Kane and Rieseberg, 
2007; Andrew et al. 2012; Scascitelli et al. 2010; Whitney et al. 2010). 
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 Transgressive segregation appears to be common in interspecific 
Helianthus hybrids in both greenhouse and natural environments 
(Schwarzbach et al. 2001; Welch and Rieseberg, 2002a; Ludwig et al. 2004; 
Rieseberg et al. 2003). The most studied hybrids are natural derivatives of 
the two most widespread annual sunflowers, H. annuus and H. petiolaris 
(Heiser, 1947), as this hybrid combination created three different species:  
H. paradoxus (Rieseberg et al. 1990; Welch and Rieseberg, 2002), H. deserticola 
(Rieseberg, 1991a; Rieseberg, 1991b), and H. anomalus (Rieseberg, 1991a; 
Rieseberg, 1991b). The hybrid species have the same chromosome number 
as the parental species, and so represent examples of homoploid hybrid 
speciation. However, each of the hybrid species is comprised of a different 
combination of parental chromosomal segments (including rearrangements), 
which has resulted in distinctive transgressive phenotypes, as well as strong 
chromosomal sterility barriers (see below) relative to the parental species 
and to each other (Rieseberg et al. 1993, 2003; Gross et al. 2003; Rieseberg, 
2001; Rieseberg et al. 1995; Lai et al. 2005). The extreme adaptations found 
in the natural hybrid species suggest that hybridization could be useful in 
adapting cultivars to abiotic stress.

Chromosomal Compatibility Within the Genus

Chromosomal rearrangements are commonly reported in progeny from both 
intra- and inter-specific crosses within Helianthus. Large-scale chromosomal 
translocations have been reported most frequently, mainly because the 
multivalent configurations they generate at meiosis are easily detected by 
conventional light microscopy. Large inversions have also been reported 
using the same approach. Both kinds of rearrangements were confirmed 
by initial low-density comparative genetic mapping studies (e.g., Rieseberg 
et al. 1995; Burke et al. 2004; Lai et al. 2005; Heesacker et al. 2009). Recent 
very high-density genetic maps have largely validated these initial mapping 
studies, and suggest that small-scale inversions and translocations are 
frequent as well (Barb et al. 2014).
 Chromosomal translocations and inversions often cause reductions 
in the fertility of hybrids because recombinant gametes are frequently 
unbalanced (i.e., carry duplications or deletions). Because the unbalanced 
gametes are inviable, non-recombinant parental chromosomes will be over-
represented in the gametes that survive, leading to an effective reduction of 
recombination rates in rearranged chromosomes. Hybrid fertility reduction 
is probably most important in preventing species’ mergers following 
secondary contact (Noor et al. 2001; Rieseberg 2001). In some instances, 
mechanisms have evolved that suppress recombination in inversions prior 
to gamete development. In these situations, recombination suppression 
appears to be complete, although gene conversion rates can be surprisingly 
high (Gaut et al. 2007). Recombination suppression due to inversions has 
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been shown to facilitate the accumulation of hybrid incompatibilities, as well 
as local adaptation in the presence of gene flow (Kirkpatrick and Barton, 
2006; Lowry and Willis 2010). 
 From a breeding perspective, chromosomal structure impacts the success 
of intentional introgression with different species, with collinear portions of 
genomes being easier to introgressthan regions within or near rearrangements 
(Long, 1960; Whelan, 1978; Georgieva-Todorova, and Bohorova, 1980; 
Espinasse et al. 1995; Rieseberg et al. 1995; Rieseberg et al. 1996; Burke  
et al. 2004; Renaut et al. 2013; Barb et al. 2014). This is due both to the direct 
effects of the rearrangements and to linked hybrid incompatibilities (Orr  
et al. 1996; Lai et al. 2005). There is potential to utilize marker information to 
find rare recombinants through marker-assisted selection to eliminate these 
deleterious mutations (Robertson, 1960; Charlesworth, 2012).
 Helianthus has a high rate of karyotypic evolution (Geisler, 1931; 
Seiler, 1992; Seiler and Rieseberg, 1997; Rieseberg et al. 1995; Fang et al. 
2012; Feuk et al. 2006; Burke et al. 2004), estimated at 5.5-7.3 chromosomal 
rearrangements per million years (Chandler et al. 1986; Burke et al. 
2004). This has led to the recognition of chromosomal subtypes among 
Helianthus species that predict crossing success (Schilling and Heiser, 1981; 
Chandler et al, 1986; Heiser et al. 1962; Sossey-Alaoui et al. 1998; Ceccarelli  
et al. 2007; Natali et al. 2008; Jan and Chandler, 1989). For example, 
the perennial polyploid species in Helianthus generally cross despite 
morphological differences (Long, 1955; Long 1960), different origins, and 
large variation in chromosome structure and pairing. Chromosomal 
subtypes have been identified; for example, homology has been reported 
between H. ciliaris, H tuberosusand H. annuus as well as generally within 
the perennial diploid species’ genomes (Espinassee et al. 1995). Different 
sections within the genus have shown differential abilities to hybridize with 
each other, with species within sections generally hybridizing better (Faure 
et al. 2002). The development of predictive chromosomal compatibility 
groups required that many different populations be tested, since there can be 
significant intraspecific variation in hybrid formation and vigor (Espinasse 
et al. 1995; Edmands, 2002). Understanding chromosomal structure provides 
an opportunity to better utilize wild populations in plant breeding, by 
providing insight into crossing success and what traits and genes are likely 
to be transferable. Chromosomal structure can often differ within species 
that are present in the primary, secondary and tertiary germplasm, and 
knowing which populations have structural variation could provide easier 
access to useful traits. While many crosses within Helianthus are possible, 
those involving more distant wild relatives sometimes require special 
techniques, such as embryo rescue and tissue culture or even the induction 
of an additional round of amphiploidy, with intraspecific variation in success 
(Jan and Chandler 1989, Feng and Jan 2008). 
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General Utility of Helianthus Crop Wild Relatives

The ability of the cultivated sunflower to readily hybridize with many other 
Helianthus species has been exploited extensively through the intentional 
introduction of genetic material from wild relatives (both annual and 
perennial) into the cultivated gene pool (Table 1). Wild relatives are sources 
of disease resistance genes (Feng et al. 2006), cytoplasmic male sterility 
(Seiler and Jan, 1994), quality traits, and yield traits. Many of these traits 
have been the target of mapping efforts (Bert et al. 2004; Qi et al. 2012; Yue 
et al. 2008; Yue et al. 2010), which have indicated that large chromosomal 
segments sometimes introgress with the traits of interest. Indeed, different 
interspecific hybridization events cover approximately 10% of the cultivated 
sunflower genome (Baute et al. 2015). Interspecific introgressions can be 
difficult to eliminate (or reduce in size if linked to a trait under selection) 
because of limited recombination between different chromosomal types 
(Livaja et al. 2013). As genotyping becomes cheaper and more efficient, the 
ability to utilize marker assisted selection to introgress precise genomic 
regions from crop wild relatives is an increasingly feasible option to limit 
the extent of donor parent contributions to cultivated material. 

 Cytoplasmic Male Sterility and the Formation of a Hybrid 
Seed Industry

Hybrid breeding has been used to improve performance in many crops, 
thereby making a fundamental contribution to the green revolution (Borlaug 
2000). Hybrid vigor (heterosis) is formed by crossing different strains, 
varieties or species to produce offspring that outperform their parents in 
terms of biomass, growth rate, and fertility. This phenomenon was first 
described by Darwin in both natural and domesticated species (Darwin 
1859). Hybrid production in crop species has been central to increasing 
crop production. The genetic basis of heterosis has been debated for over 
a century; however, a general consensus has been reached on three main 
models: dominance (Bruce 1910, Jones 1917), over-dominance (Shull 1908, 
East 1936, Crow 1948), and pseudo-overdominance (Crow 1952). The outcome 
of all three models is the same: increased performance in hybrid lines over 
their parents. Unfortunately, most crop plants bear anthers and stigmas in 
the same flower, or at closely associated flowers, so emasculation is required. 
In many plant species emasculation is tedious and requires a relatively high 
degree of technical training, reducing the economic potential of hybrid seed 
production (Kaya 2014). 
 In nature, several mechanisms have evolved to reduce self-fertilization 
and enhance outcrossing. One common mechanism is cytoplasmic male 
sterility (CMS), in which plants fail to produce functional pollen while 
maintaining female fertility. CMS is a maternally inherited trait and is 
thought to arise from an incompatibility between the nucleus and cytoplasm 
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(Hanson and Conde 1985). Often, rearrangements in the mitochondrial DNA 
(mtDNA) have been associated with CMS, with collinear chloroplast DNA 
(cpDNA) in both male-fertile and male-sterile lines (Rieseberg and Seiler 
1990). Although the molecular mechanism of CMS has been fully described 
in only a few species (Touzet and Meyer 2014), it provides an efficient 
mechanism to guide crossing in breeding programs and for production 
of hybrid seeds in many crop plants (Dewey et al. 1986, Makaroff et al. 
1989, Bailey-Serres et al. 1986), including sunflower (Siculella and Palmer 
1988). In parallel with the evolution of CMS in nature, a counteracting 
mechanism to this destructive mitochondrial effect has evolved to protect 
pollen functionality. This restoring mechanism is induced by nuclear genes 
that regulate the accumulation of transcripts or proteins associated with 
the CMS locus (Hanson and Bentolila 2004; Luo et al. 2013). Restorer genes 
typically belong to the penta-tricopeptide repeat (PPR) family (Brown et al. 
2003, Wang et al. 2006), which is one of the largest gene families in plants. 
PPR genes occur in small clusters of closely related genes that have arisen 
through evolutionarily recent gene duplication and transposition, perhaps 
enabling them to respond quickly to the challenge posed by CMS (Schnable 
and Wise 1998).
 Similar to in other species, CMS in sunflower is associated with genomic 
rearrangements in the mitochondria that lead to a chimeric open reading 
frame (ORF) (Leroy et al. 1985, Siculella and Palmer 1988, Köhler et al. 1991). 
The chimeric ORF in sunflower (ORF522) was shown to share sequence 
similarity with the ATP synthase subunit ORFB, which results in competition 
between the two proteins leading to decreased phosphorylation activity of 
the ATP synthase complex (Balk and Leaver 2001, Sabar et al. 2003). As the 
energetic demands increase during anther development, the expression of 
ORF522 compromises ATP complex activity and leads to developmental 
delay and pollen abortion. Although several nuclear restorers have been 
identified, the molecular mechanism of fertility restoration remains largely 
unknown. However, the most common locus (Rf-1) maps to a cluster of PPR 
genes on linkage group 13 (Baute 2015). 
 While many traits been introduced to cultivated sunflowers through 
interspecific hybridization, few have been as important as cytoplasmic 
male sterility (CMS). Today, commercial sunflower production is dominated 
by hybrid genotypes, made possible by the discovery of CMS in wild 
germplasm. However, commercial production of sunflower largely relies on 
a single cytoplasm, CMS PET-1, which originated from an interspecific cross 
of Helianthus petiolaris Nutt. With H. annuus L., and its corresponding fertility 
restoration gene, Rf-1 (Leclercq 1969, Gimenez and Fick 1975, Horn et al. 2003; 
Jan and Vick 2007). Hybrid production involves a female inbred parental line 
(CMS-HA), which carries the male-sterile cytoplasm (S-type cytoplasm) but 
not the fertility restorer allele (Rf) in the nucleus, and a male inbred parental 
line (RHA), which can carry a normal (N-type) or CMS (S-type) cytoplasm, 
but which carries the restorer allele (Rf). Therefore the female parent is a 
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male-sterile inbred line (S-rfrf) and the male parent is male-fertile inbred 
line (S-RfRf or N-RfRf). The resulting hybrid is male-fertile, containing both 
the CMS and the restorer allele (S-Rfrf). This complex system of production 
is utilized because the increase in performance seen in hybrids greatly 
increases the economic value of the crop. Hybrid breeding has been the 
impetus for much of the gains seen in worldwide sunflower production over 
the past 40 years (FAO Stat). 
 More than 70 CMS sources have been identified in sunflower wild 
relatives (Serieys 2005), but the corresponding restorer genes are known 
for only about half (Jan and Seiler 2006). Most CMS systems are from 
wild relatives and show complete male sterility: e.g. H. petiolaris (PET1), H. 
resinosus (RES), H. rigidus (RIG), H. giganteus (GIG1), H. maximiliani (MAX1), 
and H. argophyllus (ARG3) (Kaya 2014). For the most commonly used CMS 
(PET1), two genes (Rf1 and Rf2) were identified to restore fertility and have 
been used extensively in sunflower hybrid production (Fick and Miller 1997). 
These restoring genes were found to be effective also for the ARG1 and 
ARG3 derived sterility (Christov 1991; Jan and Seiler 2006). However, other 
CMS sources are still not widely used for hybrid production at commercial 
scale (Kaya 2014).
 Use of alternative CMS/Rf systems is recommended for sunflower 
hybrid seed production to reduce genetic vulnerability (e.g., susceptibility 
to diseases, pests, environmental stresses) associated with cytoplasmic 
uniformity. Breeders tend to avoid exploring new CMS systemsdue to the 
substantial effort involved in producing new CMS lines and the introgression 
of the corresponding Rf genes. Different cytoplasms may significantly 
impact drought tolerance and other traits (Sambatti et al. 2008). Perhaps a 
better understanding of the benefits of different cytoplasms will encourage 
expansion of the cultivated cytoplasm diversity. 

Branching

One of the major domestication traits of sunflower is monocephaly (single 
head). A single head allows for more synchronous flowering and easier 
harvesting. However, after the initiation of hybrid sunflower production in 
the 1960’s there was a need for male lines to flower for longer periods of time. 
This led to introgression of the recessive B-locus responsible for branching 
from wild H. annuus back into cultivated male lines (Mandel et al. 2013). 
This illustrates a difference in the needs of domestication and improvement 
phases of crop development and, like CMS (above), shows how wild diversity 
continues to contribute to sunflower improvement.

Introgression of Disease Resistance

Sunflower is one of a handful major crops that is widely cultivated at its 
center of origin, and is thereby exposed to the large number of pathogens 
that have coevolved with its wild progenitors. There are more than fifty 
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diseases of Helianthus, although very few are of economic importance (Gulya 
et al. 1997). Genetic resistance is often the most cost effective way to deal with 
disease pressure (Talukder et al. 2014); therefore understanding the extent of 
both intra- and interspecific genetic resistance in germplasm collections is of 
great value. The large number of species within Helianthus that are adapted 
to a wide number of different pests and pathogens are an important resource 
for breeding efforts. As described above, most Helianthus species hybridize 
(Long et al. 1960; Chandler et al. 1986; Espinasse et al. 1995), and this ability 
has been extensively exploited with respect to the introgression of disease 
resistance (Table 1). At least twelve different species have been utilized to 
introgress disease resistance for eight different major diseases of cultivated 
sunflower (Table 1). The donor species occur across most of North America 
with the exception of the southeastern USA, where native Helianthus species 
are mainly part of the tertiary germplasm. The species that have been 
utilized are also well distributed across the secondary (67%) and tertiary 
(33%) germplasm. For example, members of the secondary germplasm, H. 
argophyllus and H. praecox, have been utilized for resistance to downy mildew 
(Plasmoparahalstedii), a common disease in in the northern part of North 
America infecting seedlings and causing significant damage (up to 25% of a 
field). Resistance to the major fungal pathogen, Sclerotinia sclerotiorum, was 
identified in Helianthus pauciflorus; this disease has been a major disease in 
North America.

 Crosses Between the Crops: Interspecific Hybridization Between 
H. tuberosus and H. annuus

Helianthus tuberosus diverged from H. annuus approximently 1.7-8.2 million 
years ago (Schilling, 1997) and has been a major donor of useful genes for 
sunflower development (Hajjar and Hodgkin. 2007). The chromosomal 
interactions between the two crops have generated much interest and 
although the genomes are not the same, one of the sub-genomes of H. 
tuberosus pairs effectively with the H. annuus genome, such that strong viable 
hybrids are formed (Espinasse et al. 1995; Atlagic, 1993; Hulke and Wyse, 
2008; Sujatha and Prabakaran, 2006). Helianthus annuus × H. tuberosus hybrids 
are tetraploid (2n = 4x = 68), with mixed bivalent and multivalent pairing 
(Sujatha and Prabakaran, 2006; Atlagic et al. 1995). Chromosomes from 
different populations of H. tuberosus pair differently with H. annuus during 
meiosis due to translocations and inversions, resulting in variable fertility in 
hybrid plants (Kostoff, 1939; Atlagic et al. 1995; Atlagic et al. 1993; Natali et al. 
1998; Chandler et al. 1986; Atlagic et al. 1995; Kantar et al. 2014). 
 Interspecific H. tuberosus × H. annuus hybrids have been suggested to 
have agronomic value in their own right, including use as a forage crop, trait 
introgression-bridge, trap crop for blackbirds, and as a perennial oil seed 
(Seiler 1992; Atlagic, 2004; Kays and Nottingham, 2008; Kantar et al. 2014). 
Hybrid cultivars have been released in Russia and Sweden as a forage crop. 
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Development of hybrids as a perennial oil seed crop has been suggested as 
a way to increase sustainable agricultural and ecosystem service production 
(Glover et al. 2010). Exploration of such a possibility has been underway 
for two decades (Hulke and Wyse, 2008; Cox et al. 2010), with experimental 
tetraploid populations having been extensively phenotyped (Kantar et al. 
2014). Ongoing work is exploring both neo-domestication of interspecific 
hybrid populations and ecosystem services available from an emerging 
perennial crop. 

New Tools for Easier Use of Wild Relatives

Historically, exploration of crop wild relatives for use in plant breeding 
has utilized a biparental crossing approach, where diverse accessions 
(both intraspecific and interspecific) from ex situ collections were used to 
create populations in the search for useful phenotypic variation (Hajjar 
and Hodgkin, 2007). This method has been useful for the utilization of 
crop wild relatives (Khoury et al. 2015), but there are logistical limitations 
in the number of accessions that can be explored. Emerging sequencing 
technologies (2nd and 3rd generation), proteome data, metabolome data, and 
high-throughput phenotyping approaches provide a wealth of data for both 
basic and applied objectives and may help overcome logistical problems 
with conventional methods of exploring crop wild relative diversity 
(Mammadov et al. 2012; O’Driscoll et al. 2013). The cost, both per sample 
and per data point, of these emerging technologies is now affordable within 
standard laboratory budgets; this is particularly true for use of molecular 
markers (Edwards and Batley, 2010; Poland et al. 2012). Decreased costs have 
allowed for comprehensive assessments of genotypic diversity in crop wild 
relatives, and for implementation of marker-based selection schemes (e.g. 
marker assisted backcrossing, genomic selection) in many different species 
(Bernardo and Yu, 2007; Bernardo 2008; Storlie and Charmet, 2013). High 
resolution phenotyping also allows for increased precision and efficiencyin 
trait dissection in both greenhouse and field settings (Araus and Cairns, 
2014). This combination of technologies leads to a better understanding of 
local adaptation and domestication,as well as a more targeted use of crop 
wild relatives in plant breeding (Fig. 1). Finally, leveraging data from multiple 
species may broaden the utility of wild germplasm by identifying specific 
genes with conserved function across species (Du et al. 2010; Monaco et al. 
2013; Bolger et al. 2014).
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Figure 1. In order to fully utilize germplasm resources it is important to utilize both top-down 
and bottom-up approaches. These approaches are complementary, leveraging large databases 

(Germplasm, Genetic, Bioclimatic, and Biophysical), and local capacity to phenotype, to 
increase the use interspecific hybridization in plant breeding.

Next Generation Germplasm Resources

To further enhance utilization there has been interest in creating populations 
that will allow more efficient deployment of wild alleles in breeding 
programs. Novel mating designs are being used to enhance the number 
of recombinationevents, increase the number of wild alleles segregating in 
populations, and to allow the effects of wild alleles to be simultaneously 
tested across numerous genetic backgrounds. With biparental mating 
designs, there is limited resolution to identify the specific genes underlying 
quantitative variation. New mapping designs that leverage increased 
molecular marker density and increased numbers of recombination events 
include association mapping (individuals sampled directly from breeding or 
wild populations), nested association mapping (populations based on a hub 
parent design) and multi-parent intercross populations, in which multiple 
parents are randomly mated to increase the number of recombination events 
(Morrel et al. 2012). These mating designs provide easier access to and better 
knowledge of the effects of alleles present in the primary, secondary and 
tertiary germplasm of crop species.

Conclusions

Hybridization has been of central importance in the exploration and 
utilization of wild germplasm in sunflower improvement. It was central to the 
development of a hybrid sunflower industry, understanding chromosomal 
interactions among species, and the protection of yield through the provision 
of disease resistance. Hybridization is currently being used to develop new 
crops and to understand the physiological mechanisms and genetic basis of 
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resistance to abiotic stress. New mating designs and technology which enable 
precision breeding, combined with the need to develop environmentally 
resilient crops, will enhance the value of wild germplasm in years to come.
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