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Crop wild relatives (CWR) are a rich source of genetic diversity for crop improvement.

Combining ecogeographic and phylogenetic techniques can inform both conservation

and breeding. Geographic occurrence, bioclimatic, and biophysical data were used to

predict species distributions, range overlap and niche occupancy in 36 taxa closely

related to sunflower (Helianthus annuus L.). Taxa lacking comprehensive ex situ

conservation were identified. The predicted distributions for 36 Helianthus taxa identified

substantial range overlap, range asymmetry and niche conservatism. Specific taxa (e.g.,

Helianthus deblis Nutt., Helianthus anomalus Blake, and Helianthus divaricatus L.) were

identified as targets for traits of interest, particularly for abiotic stress tolerance, and

adaptation to extreme soil properties. The combination of techniques demonstrates

the potential for publicly available ecogeographic and phylogenetic data to facilitate the

identification of possible sources of abiotic stress traits for plant breeding programs.

Much of the primary genepool (wildH. annuus) occurs in extreme environments indicating

that introgression of targeted traits may be relatively straightforward. Sister taxa in

Helianthus have greater range overlap than more distantly related taxa within the genus.

This adds to a growing body of literature suggesting that in plants (unlike some animal

groups), geographic isolation may not be necessary for speciation.

Keywords: conservation, climate change, crop wild relatives, ecological niche modeling, plant breeding, plant

genetic resources, publicly available data sources

INTRODUCTION

Plant genetic resources represent the biological foundation for maintaining and improving crop
productivity having played a central role in crop development from antiquity (Porter et al., 2014).
Crop wild relatives (CWR) are an important source of useful traits for plant breeding (Hoisington
et al., 1999; Hajjar and Hodgkin, 2007). With the world’s population projected to increase the need
to produce more food while using fewer natural resource inputs under increasingly stochastic
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climatic conditions is a major challenge (Butler and Huybers,
2013; Challinor et al., 2014). CWR conservation and utilization
focusing on the use of improving technologies (high throughput
phenotyping, genotyping, and geographical information
systems), has been proposed as a way to acquire a greater
knowledge of conservation needs and lead to more targeted
use of CWR germplasm (Khoury et al., 2010; Cabrera-Bosquet
et al., 2012; McCouch et al., 2013). Targeted collecting for ex
situ conservation has become a priority as rapid changes in both
climate and land use patterns increasingly threaten CWR in their
natural habitats (Jarvis et al., 2008; McCouch et al., 2013).

CWR have traditionally been categorized based on crossing
relationships with domesticates; the primary germplasm contains
no crossing barriers, the secondary contains some meiotic
abnormalities, and the tertiary requires special techniques such
as embryo rescue (Harlan and de Wet, 1971; Harlan, 1976). Such
classifications may be supplemented by molecular, bioclimatic,
and biophysical data to aid in the identification of candidate
taxa for breeding, although such efforts have been constrained by
challenges in comprehensively generating and integrating these
data (Ricklefs and Jenkins, 2011).

The genus Helianthus L. contains 52 species comprising 67
taxa (Schilling, 2006; Stebbins et al., 2013). Native to North
America, the taxa occupy a variety of habitats ranging from
open plains to salt marshes (Seiler and Marek, 2011; Kane
et al., 2013). Sunflower (Helianthus annuus L.) is the most
economically important species from the genus, with∼26million
hectares in production worldwide and a substantial private
sector breeding effort, particularly for oil production (FAOSTAT,
2013). Domesticated approximately 4000 years ago in east central
North America, sunflower has a typical domestication syndrome;
i.e., it does not branch, does not have seed dormancy, has a
predictable flowering time, and does not shatter (Harlan et al.,
1973; Harter et al., 2004; Blackman et al., 2011). The crop has
undergone both selection and genetic drift during domestication
and improvement, which has reduced genetic diversity (Tang
and Knapp, 2003; Liu and Burke, 2006), with modern cultivars
retaining 50–67% of the diversity present in wild H. annuus
populations (Kolkman et al., 2007; Mandel et al., 2011).

Sunflower has often utilized CWR in breeding efforts, with
many of the taxa hybridizing well with the crop (Table S1;
Table 1) (Long, 1960; Chandler et al., 1986). Despite the
historical use, CWR of sunflower are considered to be relatively
untapped, particularly in regard to adaptation to abiotic
stresses. To contribute to an enhanced understanding of the
CWR of sunflower, this studies’ objectives were to (1) create
geographical distribution models for 36 CWR taxa, and (2)
explore niche habitation through comparisons of ecogeographic
and phylogenetic data, to identify taxa occurring in extreme
environments of potential interest to sunflower breeding.

MATERIALS AND METHODS

Species Distribution Modeling
A modified gap analysis (Ramírez-Villegas et al., 2010) was used
to determine the conservation status of 36 taxa withinHelianthus

selected based upon their potential to provide useful traits for
sunflower breeding. Briefly, (1) target taxa were identified, and
geographic occurrence data were gathered and verified, (2) the
overall representation of CWR in germplasm collections was
estimated, (3) potential distribution models were produced for
taxa with sufficient samples with coordinates, (4) the geographic
and ecological representation of germplasm collections were
assessed for each taxon by comparing potential distribution
models to existing germplasm collection locations, (5) taxa were
prioritized for further collecting based upon the average of their
overall, geographic, and ecological coverage results, and (6) gap
analysis results were correlated with the subjective assessments of
collection priorities from crop experts.

The selection of taxa for analysis was based on membership
within the primary or secondary genepools of sunflower (Vincent
et al., 2013) with the addition of all taxa from the tertiary
genepool indicated in publications to be confirmed or potential
trait donors (Table S1). A total of 12,737 occurrence records
for the 36 taxa, sourced from 31 herbaria and five genebanks,
were used for distribution models and conservation analysis
(Table S2), including 4705 records with geographic coordinates.
The overall representation of taxa in genebank collections was
estimated using the “Sampling Representativeness Score” (SRS),
calculated as the number of germplasm samples (GS) divided
by the total number of samples (GS plus reference records).
After eliminating duplicate records, potential distributions were
calculated using Maxent (Phillips et al., 2006), with a k-5 cross-
validation option and 10,000 background points for model
training over North America (Phillips, 2008; VanDerWal et al.,
2009). We included 19 bioclimatic variables derived from the
WorldClim database (Nix, 1986; Hijmans et al., 2005a,b), seven
biophysical variables from the ISRIC—World Soil Information
database (http://soilgrids1km.isric.org) at a resolution of 2.5 arc-
min, and the occurrence information (coordinates) for each
taxon as inputs (Table S3). For edaphic data we calculated
a weighted mean from five depths (0–5, 5–15, 15–30, 30–
60, 60–100 cm) to generate a single value for the first meter
of soil for each layer, and then resampled the data from 1
to 2.5 arc min resolution to match the WorldClim dataset,
using the raster package in R and ArcGIS Desktop 10.1 (Hengl
et al., 2014). Distributions were further restricted by applying a
taxon independent threshold, based on the Receiver Operating
Characteristic (ROC) curve (Liu et al., 2005). GRIN distribution
data was used to ensure that taxa distributions were not
overinflated beyond known native boundaries (USDA, 2007).
Soil cover data from GlobCover 2009 (Global Land Cover Map)
(http://due.esrin.esa.int/page_globcover.php) further refined the
maxent outputs and collecting maps by excluding urban
areas, water bodies, bare areas, and permanent snow and ice
regions.

Potential distribution models were considered accurate if they
complied with the following conditions: (i) five-fold average area
under the test ROC curve (ATAUC) is greater than 0.7, (ii) the
standard deviation of ATAUC (STAUC) is less than 0.15, and
(iii) At least 10% of grids for each model has standard deviation
less than 0.15 (ASD15). For taxa whose Maxent model did not
comply, potential distributions were estimated by forming a
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TABLE 1 | Taxa examined in this study, recommendation, position in germplasm, environmental cluster, life history, and potential extreme characteristics.

Taxa Recommendation for

Collection

Position in

Germplasm

Range overlap

with H. annuus

Environmental

Cluster

Assignment

Life History Potential Extreme Characteristics

Based on Different Ecological Niche

Relative to H. annuus

H. annuus (wild) Assessed to be well

represented

Primary NA Cluster 1 Annual NA

H. anomalus High priority Secondary Utah

New Mexico

Cluster 3 Annual Low precipitation tolerance

Tolerance to high pH

H. argophyllus Medium priority Secondary Texas Cluster 1 Annual High temperature tolerance

Tolerance to high clay content

H. arizonensis Medium priority Tertiary Arizona New

Mexico

Cluster 3 Perennial Response to stochastic climate Low

precipitation tolerance Tolerance to low

bulk density

H. atrorubens Medium priority Tertiary No overlap Cluster 2 Perennial Tolerance to low

Cation-exchange capacity

Tolerance of high precipitation

Tolerance to low pH

H. bolanderi High priority Secondary California Cluster 1 Annual Tolerance to erratic precipitation

Low precipitation tolerance

H. debilis subsp.
cucmerifolius

High priority Secondary East Texas Cluster 2 Annual High temperature tolerance

H. debilis subsp.
debilis

Medium priority Secondary No overlap Cluster 2 Annual High temperature tolerance

Tolerance of high precipitation

Tolerance to low clay content

H. debilis subsp.
silvestris

Medium priority Secondary No overlap Cluster 2 Annual Tolerance to high clay content

H. debilis subsp.
tardiflorus

Assessed to be well

represented

Secondary No overlap Cluster 2 Annual Tolerance of high precipitation

Tolerance to low clay content

H. debilis subsp.
vestitus

Low priority Secondary No overlap Cluster 2 Annual High temperature tolerance Tolerance of

high precipitation

Tolerance to low clay content

H. deserticola High priority Secondary Nevada Cluster 3 Annual Response to stochastic climate

Utah Low precipitation tolerance

New Mexico

H. divaricatus High priority Tertiary Central US Cluster 2 Perennial Perennial habit

Tolerance to low pH

H. exilis Medium priority Secondary California Cluster 1 Annual Tolerance to erratic precipitation

Low precipitation tolerance

Low bulk density

H. giganteus High priority Tertiary No overlap Cluster 2 Perennial Tolerance of high precipitation

H. grosseserratus Medium priority Tertiary Central US Cluster 3 Perennial Tolerance to erratic temperature

H. hirsutus High priority Tertiary Central US Cluster 2 Perennial Tolerance to low pH

H. maximilliani High priority Tertiary Central US Cluster 3 Perennial Low temperature tolerance

Tolerance to erratic temperature

H. neglectus Assessed to be well

represented

Secondary New Mexico Cluster 1 Annual Low organic carbon content

H. niveus subsp.
canescens

High priority Secondary California

Arizona

New Mexico

Cluster 1 Annual

Rarely

Perennial

High temperature tolerance

Low precipitation tolerance

H. niveus subsp.
niveus

High priority Secondary Baja California Cluster 1 Perennial Low precipitation tolerance

H. niveus subsp.
tephrodes

High priority Secondary California,

Mexico (Sonora)

Cluster 1 Perennial

Sometime

Annual

High temperature tolerance low

Precipitation tolerance

H. paradoxus Assessed to be well

represented

Secondary Texas, New

Mexico

Cluster 1 Annual Low organic carbon content

(Continued)
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TABLE 1 | Continued

Taxa Recommendation for

Collection

Position in

Germplasm

Range overlap

with H. annuus

Environmental

Cluster

Assignment

Life History Potential Extreme Characteristics

Based on Different Ecological Niche

Relative to H. annuus

H. pauciflorus
subsp. pauciflorus

High priority Tertiary Central US Cluster 3 Perennial Tolerance to erratic temperature

H. pauciflorus
subsp.

subrhomboideus

High priority Tertiary Central US Cluster 3 Perennial Low temperature tolerance Tolerance to

erratic temperature

H. petiolaris subsp.
fallax

High priority Secondary Western US Cluster 3 Annual Tolerance to erratic temperature

H. petiolaris subsp.
petiolaris

High priority Secondary Central US Cluster 3 Annual Tolerance to erratic temperature

Low temperature tolerance

H. praecox subsp.
hirtus

Assessed to be well

represented

Secondary West Texas Cluster 1 Annual High temperature tolerance

H. praecox subsp.
praecox

Assessed to be well

represented

Secondary East Texas Cluster 2 Annual Tolerance to erratic temperature

H. praecox subsp.
runyonii

Low priority Secondary Texas Cluster 1 Annual Tolerance of high bulk density

H. resinosus Medium priority Tertiary No overlap Cluster 2 Perennial Tolerance of high precipitation

Tolerance to low

Cation exchange capacity Tolerance to

low pH

H. salicifolius Medium priority Tertiary Oklahoma

Kansas

Arkansas

Missouri

Cluster 3 Perennial Tolerance to high clay content

H. silphioides Assessed to be well

represented

Tertiary Oklahoma

Arkansas

Missouri

Cluster 2 Perennial Tolerance to low cation-exchange

capacity

Tolerance to low pH

H. strumosus High priority Tertiary Central US Cluster 2 Perennial Tolerance of high precipitation

H. tuberosus Medium priority Secondary Central US Cluster 2 Perennial Low temperature tolerance

H. winteri High priority Primary California Cluster 1 Perennial High temperature tolerance

circular buffer of 50 km around each occurrence point for each
species.

Geographic representativeness of taxa in genebank collections
was calculated using the “Geographic Representativeness Score”
(GRS), comparing the spatial overlap of a circular buffer
surrounding each accession record (50Km radius as described
in Hijmans et al., 2001) against the potential distribution of the
taxon. Ecological gaps in genebank collections were calculated
using the “Ecological Representativeness Score” (ERS), calculated
by comparing records to the full environmental range of the
modeled taxon across ecosystem types (Olson et al., 2001). The
overall priority for further collecting for ex situ conservation for
each taxon was determined by averaging the SRS, GRS, and ERS
with equal weight to obtain a final prioritization score (FPS),
classified according to the following ranges: 1., high priority (FPS
between 0 and 3); 2., medium priority (FPS between 3.01 and
5); 3., low priority (FPS between 5.01 and 7.5); and 4., and well
conserved taxa (FPS between 7.51 and 10).

Expert Evaluation of Conservation
Assessment Results
Predicted taxon distributions based on genebank and herbarium
records were compared to the knowledge of four crop experts
with experience with Helianthus distributions, systematics,

conservation, and diversity. Helianthus experts were asked
to evaluate of the adequacy of germplasm collections per
species based on their knowledge of total accessions conserved,
geographic, and environmental gaps. This assessment was given
an expert priority score (EPS), analogous to the FPS score. A
second score was generated, the contextual EPS, which based
on additional knowledge such as in situ threats and utility to
crop breeding. After initial evaluation the experts were asked
to review the quantitative results, occurrence data, potential
distribution models, and maps of collecting priorities. Following
expert input, occurrence data were refined through elimination
of incorrect points and adjustment native areas. Potential
distribution modeling and gap analyses were then conducted
using refined datasets to create more accurate species distribution
maps. Potential zones for collecting were identified for each high
priority taxon, and then combined to create maps depicting areas
where multiple taxa of high priority for conservation could be
collected (Figure 1).

Ecogeographic Niche Overlap and
Phylogenetic Analyses
Potential distribution probability outputs were used when
Maxent models performed well and CA50 sample buffers
when Maxent models did not pass the validation criteria, to
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FIGURE 1 | Synthesis of gap analysis results and expert assessments for each of the 36 Helianthus CWR taxa surveyed. Taxa are listed by descending

priority for further collecting by category: HPS, high priority taxa; MPS, medium priority taxa; LPS, low priority taxa; NFCR, no further collecting recommended. The

final priority scores (FPS, black circle) is the mean of the sampling representativeness score (SRS, blue circle), geographic representativeness score (GRS, red circle),

and ecological representativeness score (ERS, green circle).

calculate niche overlap based on Schoener’s D and Hellinger’s
I as outlined in Warren et al. (2008), and implemented in
the R package Phyloclim (Heibl, 2011). Both indices utilize
probability distributions in geographic space, with statistics
ranging from 0 (no niche overlap) to 1 (complete niche overlap).
First pairwise niche overlap was examined, then niche overlap
between allopatric/sympatric taxa separately, annual/perennial
taxa separately, and lastly allopatric/sympatric sister taxa.
Geographic range overlap for all pairwise combinations (630
comparisons) was calculated in two ways, with respect to the
larger range [(2*number of shared grid cells)/(number of grid
cells in taxa A+ number of grid cells in taxa B)] and with respect
to the smaller range [(2∗number of shared grid cells)/(Total
number of grid cells in taxa A + Total number of grid cells in
taxa B)]/(Total potential number of shared grid cells) [(2∗total
number of grid cells in species with the smaller range)/(Total
number of species A+ Total number of species B)].

Principal component analyses (PCA) were used to assess the
importance of ecogeographic variables (Table S3) to variation in
occurrence data of distribution models per taxon. A hierarchical
cluster of principal components (HCPC) identified climatic
clusters using R package FactoMineR (Husson et al., 2014).
Boxplots for each bioclimatic and biophysical layer were created
based on occurrence data points (Figure S1). Ecogeographic
variables for cultivated sunflower were extracted from the area of

species distribution maps (Monfreda et al., 2008) at a resolution
of 5 arc-min, with a random sample of 1000 points weighted by
harvested area taken from major production regions.

We downloaded the publically available 18S-26S Ribosomal
DNA sequence from the external transcribed spacer (ETS)
from GenBank (NCBI-http://www.ncbi.nlm.nih.gov/) for 28 of
the 36 Helianthus taxa, aligned the sequences using ClustalW,
and constructed a maximum likelihood phylogeny with 1000
bootstrap replications, using MEGA6 with a Jukes-Cantor
nucleotide substitution model (Tamura et al., 2013). We
performed a Mantel test in R utilizing the ade4 package
to explore the relationship between geography and genetics
(Dray and Dufour, 2007). We estimated phylogenetic signal of
individual ecogeographic traits utilizing Blomberg’s K (Blomberg
et al., 2003), using the multiphylosignal command with 1000
permutations in Picante (Kembel et al., 2010).

RESULTS

Geographic Distributions of Sunflower
Crop Wild Relatives
Predicted distribution maps were produced for 36 Helianthus
taxa, along with taxon richness and collecting hotspot maps
(Figure 2; Figure S2). Thirty of the 36 taxa (83%) produced
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valid maxent models with utilization of soil pH and percent
sand greatly improving the accuracy of distribution models, as
assessed by expert opinion (Figure 3). Five hotspots (areas of
high taxon-level diversity) were identified in the USA, including
the southeastern gulf coast, the south-central, the midwest,
the north central, and the central east coast (Figure 2A). Our
results suggest that half of the 36 taxa are in urgent need of
further collecting (high priority species—HPS), along with 28%
in moderate need (medium priority species—MPS), 6% of low

priority (LPS), and 17% that are well represented in existing
germplasm collections and thus do not require urgent additional
collecting (Table 1). While the primary genepool taxa has been
well collected, only 10% of the taxa in the secondary genepool are
well represented across their geographic, climatic, and edaphic
ranges. Likewise, only 7% of taxa in the tertiary genepool were
assessed as well-conserved (Figure 1; Table 1). These results
contrasted with those of expert reviewers, who classified more
species as LPS. The discrepancy between the results and expert

FIGURE 2 | Map of North America showing (A) taxon richness of sunflower and (B) hotspots for further collecting of high priority taxa.

FIGURE 3 | (A) Geographic niche overlap based on ecogeographic variables, Schoener’s D (above diagonal) and modified Hellinger’s I (below diagonal). Taxa are

grouped by phylogenetic relationship. Values range from 0 (no overlap; purple) to 1 (complete overlap; orange); (B) Occurrence points for assessed taxa grouped

based on the first three principle components of biophysical and bioclimatic variables. Clusters share homogeneous bioclimatic and biophysical conditions.
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opinion was due in part to overly optimistic distribution models
regarding likelihood of occurrence, in comparison to expert
realities of existence of populations in these regions. Additionally,
experts assessed some taxa, such as Helianthus debilis ssp.
cucumerifolius, at lower priority because distributions have
expanded recently as weedy populations invade new areas, and
such regions were not considered by the experts as of particular
priority.

Ecological Niches of Sunflower Crop Wild
Relatives
Three ecogeographic clusters differentiate the taxa, with the
first three PCs accounted for 74.3% of the variation (Figure 3B;
Table S4). Clusters broadly corresponded to plain, desert,
and woodland ecosystems (Table 1). Cluster one was mostly
composed of the secondary germplasm and differentiated
by temperature, while cluster two was mostly the tertiary
germplasm and differentiated by precipitation. Cluster three
was differentiated by soil and was evenly split between the
secondary and tertiary germplasm (Table S3). It is important to
note that PCA can increase type one error, so ecological niches
must be carefully examined and validated (Revell, 2009; Uyeda
et al., 2015). Schoener’s D and Hellinger’s I identified substantial

TABLE 2 | Environmental Niche occupancy based on Schoener (1968) D

and a modified Hellinger’s I (Warren et al., 2008).

Perfect D or I Greater D or I Less than

Overlap (%) than 0.5 (%) 0.2 (%, Divergent Niche)

All taxa 36.9 69.4 4.7

Annual taxa 32.2 36.6 6.6

Perennial taxa 19.8 85.7 2.2

Allopatric taxa 54.2 62.5 4.3

Sympatric taxa 3.3 83.3 2.6

Sister taxa 33.3 57.7 2.6

niche overlap with few taxa showing niche divergence (Figure 3;
Table 1).

Potential geographic distributions of crop wild relative taxa
were examined for overlap with wild H. annuus (Figure S1);
most (81%) taxa exhibited some geographic range overlap with
H. annuus (Table 1). Among CWR taxa, 39% of pairwise
comparisons had overlapping geographic distributions
(sympatry), while 61% were allopatric (Table S5; Figure S3).
Eight of the 12 sister taxa pairs among the CWR showed some
level of sympatry (Table S6). There was considerable range
asymmetry between taxa (Figure S1), with the amount of overlap
depending on the direction of the comparison, where the smaller
range showed 26%more overlap on average than the larger range
(Table S5).

There was general niche conservatism even for sister-taxa
(Figure 3; Table 2). While ecogeographic niches were fairly
similar for many variables, occasionally there was substantial
divergence (Figure 4; Figures S1, S4). Phylogenetic niche
conservatism was found in ∼54% of variables (Figure 5).
Divergence was found in several soil variables suggesting an
important role of soil in Helianthus diversification. A Mantel’s
test using Mahalanobis distance (r = 0.1423, p = 0.01),
indicated that taxa that are geographically close are generally
more closely related genetically. Notable exceptions to this were
H. maximilliani, H. grosseserratus, and H. giganteus, which are
sympatric with H. annuus, but are distantly related.

DISCUSSION

There has been increased effort to digitize data related to plant
species in general and CWR in particular. The public databases
(GBIF, ISRIC, WorldClim, National Germplasm repositories,
DivSeek) that archive these data are an increasingly important
tool to conservationists, evolutionary biologists and plant
breeders. Utilizing public data can reduce the research costs
in terms of people hours and consumables to achieve desired
environmental and food production goals. Exploring public

FIGURE 4 | Climatic niches for (A) mean diurnal range and annual precipitation, (B) Soil pH and mean annual precipitation, (C) mean diurnal range and

annual precipitation. Niches per taxa represent the middle 90% of occurrence points, i.e., 10% outliers are not included. Red boxes show the niche of wild H.
annuus and black boxes show the niche of cultivated H. annuus in North America.
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FIGURE 5 | Test of phylogenetic signal utilizing the K for 25 of 36 taxa analyzed with complete genetic and environmental information (Blomberg et al.,

2003). K measures phylogenetic signal in traits, where K-values below 1 indicates low dependence of traits on evolutionary history (not conserved between taxa) and

K-values above 1 indicates trait conservation over evolutionary history (traits conserved over evolutionary time). *indicates K significantly greater than 1 (p < 0.05).

databases can provide a targeted way to identify accessions for
introgression that can then be used to validate predicted extreme
variation. This may be a way to more quickly utilize germplasm
collections and provide a link to international initiatives
aimed at facilitating more use of plant genetic resources
(www.DivSeek.org). Here we have used geographic occurrence,
bioclimatic, and biophysical data to predict species distributions,
range overlap, and niche occupancy in 36 Helianthus taxa that
are cross-compatible with cultivated sunflower and thus likely
to be useful in crop breeding. As discussed briefly below, our
results not only have implications for conservation genetics and
breeding in Helianthus, but they also impact our understanding
of the role of geography in the origin of species in this group.

Implications for Conservation and Plant
Breeding
Our approach is both new and complementary to previous
work on Helianthus species distributions and CWR in the
literature (Thompson et al., 1981; Rogers et al., 1982). The
method of constraining ranges to known native distributionsmay
have limited our identification of some the extreme variation.
Despite this, many taxa that diverge ecologically from cultivated
sunflower were identified (Figure 4; Table 1). It was also possible
to identify extreme populations within taxa that showed potential
adaptation to different ecological niches.

Taxa with larger ranges tend to have greater resilience to
changes in environmental conditions than taxa withmore limited
distributions (Sexton et al., 2014; Sheth and Angert, 2014). Thus,
the latter may be considered a primary priority for conservation.
Several taxa have expanded far beyond their historical ranges,
including H. annuus, H. petiolaris Nutt., H. argophyllus Torrey
and Gray, H. giganteus L. and H. tuberosus L. While taxa from

the non-native parts of their ranges have not been prioritized,
existing accessions from such ranges are acknowledged, and
may be worthwhile for exploration for traits useful in crop
breeding.

Clustering of CWR by environmental variables has great
utility by allowing genetic resources to be exploited in a more
targeted manner. For example, with respect to soil pH the
taxa H. atrorubens, H. resinosus, and H. deserticola occupy
different ecological space from cultivated H. annuus (Figure 4).
These taxa represent potential candidates for tolerance to acid
or alkaline soils, particularly to improve the ability of the
crop to accumulate heavy metals for phytoremediation (Fassler
et al., 2010). Surprisingly, when examining the properties of
the primary, secondary, and tertiary germplasm, often extreme
profiles are found in the primary germplasm. This is fortuitous
since introgression from primary germplasm is more likely to
be successful (Figure 4; Figure S1; Table S7). Approximately 650
wild H. annuus accessions are conserved in genebanks which
occur outside the ecological parameters of the cultivar (Table S7).
The general reduction of environmental diversity occupied by the
cultivated sunflower relative to wild H. annuus may indicate the
reduction in genetic diversity occurring through domestication.

Recent advances in plant and animal breeding (e.g., marker
assisted selection, genomic selection) have been facilitated by low
cost molecular marker technologies resulting in new tools that
can be used to broaden the genetic base in crops (Tester and
Langridge, 2010). These methods can shorten breeding cycles,
increasing genetic gain per unit time, and allow for wider crosses
to be utilized by minimizing linkage drag (Bernardo, 2008).
The recent development of genome wide marker sets (Bowers
et al., 2012; Renaut et al., 2013) and release of the H. annuus
genome (Kane et al., 2011; http://www.sunflowergenome.org)
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facilitate the use of marker assisted selection (Iftekharuddaula
et al., 2011) by decreasing costs and increasing data resolution.
Further, if germplasm collections are genotyped, these data can
be used to associate particular allelic variants with environmental
adaptation (Fang et al., 2014).

Range Overlap of Wild Relatives of
Sunflower
Sister species in Helianthus often have overlapping ranges, an
observation that is consistent with sympatric and “budding”
speciation (parapatric or peripheral range speciation).
Substantial range asymmetry among some (but not all) sister
species is also consistent with a budding speciation scenario
(Table S6). The amount of range overlap between sister taxa in
Helianthus is similar to recent reports from other plant genera,
but different from many animal groups, where allopatry tends
to be the rule in speciation (Mayr, 1954; Soltis et al., 2004;
Quenouille et al., 2011; Anacker and Strauss, 2014). This may
suggest that geographic isolation is less critical to plant than
animal speciation, perhaps because of the low vagility of many
plant species.

Unlike sympatric congeners in other plant groups (Anacker
and Strauss, 2014; Grossenbacher et al., 2014), Helianthus sister
taxa typically lack strong ecological divergence. This observation
is inconsistent with most models of speciation involving gene
flow, which assume divergent ecological selection (Via, 2009).
Possibly, our analyses lacked sufficient resolution or focus on
key ecological attributes to detect real differences between the
ecological niches of these species. For example, it is possible that
there has been pollinator and phenological divergence between
sister species that was not included in our analyses. Alternatively,
local niche differences between sympatric populations may have
been masked by substantial ecological heterogeneity among
populations of the more widely ranging species. Additionally,
the approach used was designed to analyze potential habitat in
the historical, native range, rather than recent range expansions,
which in many cases may be recent introductions facilitated
by humans, perhaps accounting for observations of limited
ecological divergence.

Our analyses imply that many Helianthus taxa have similar
ecological niches and exhibit niche conservatism. Under niche
conservatism, greater allopatric and parapatric speciation is
predicted, as habitat fragmentation is expected to contribute
to reproductive isolation (Loera et al., 2012). While such a
speciation strategy would be surprising given the overlap in

geographic range of sister species within Helianthus, this trend
has been observed in North American Ephedra (Loera et al.,
2012). That larger amount of niche conservatism observed here
than in other systems may be due to properties of the K-statistic,
which can have inflated values in polyphyletic phylogenies and in
the presence of incomplete lineage sorting, both of which occur
in Helianthus (Rosenthal et al., 2002; Gross and Rieseberg, 2005;
Horandl and Stuessy, 2010; Davies et al., 2012).

CONCLUSIONS

Using a combination of gap analysis, environmental niche
modeling, and phylogenetic approaches 36 CWR of sunflower
were examined. Taxa that are under-represented in germplasm
collections as well as species and populations inhabiting
environmental niches with extreme phenotypes that may
possess traits of value to crop improvement were identified.
In Helianthus, sister taxa appear to occur more frequently in
sympatry than allopatry, possibly suggesting that speciation
may occur in the presence of gene flow. Finally, much of the
primary genepool occurs in extreme environments indicating
that utilization of wildH. annuus for the breeding of abiotic stress
tolerance may produce quick gains with minimal effort.
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