Population Genomics of Speciation m)
and Adaptation in Sunflowers e

Dan G. Bock, Michael B. Kantar, and Loren H. Rieseberg

Abstract Sunflowers are well-established model organisms in evolutionary biol-
ogy; studies of them have made important contributions to our understanding of
hybridization as an evolutionarily constructive process. Here, after introducing
earlier foundational work, we review recent population genomics studies in this
group. We discuss the origin of sunflowers, and how genomic data has helped
disentangle species relationships. We then review work on past and ongoing speci-
ation, as well as adaptation in natural populations or during domestication and the
evolution of invasiveness. Results from these studies have shed light on the nature of
sunflower species, revealing that sunflower genomes are mosaics that retain evi-
dence of past and ongoing hybridization with congeners. This occurs even in species
for which multiple compounded isolating mechanisms prevent interbreeding. Stud-
ies of cultivated sunflowers have similarly clarified that a substantial fraction of the
domesticated gene pool is derived from introgressions from as many as half a dozen
different species, while also identifying cases of crop-wild gene flow. In invasive
species, hybridization may occasionally spur highly competitive genotypes, includ-
ing in perennial species where the beneficial effects of hybrid vigor can be
maintained. Population genomics studies have shown that large chromosomal blocks
of high linkage disequilibrium, many of which are chromosomal inversions, facili-
tate local adaptation of sunflower populations given widespread gene flow. These
haploblocks were found to control multiple traits and are often themselves the result
of hybridization and introgression. We conclude by considering future research
challenges for the sunflower community. These include a thorough characterization
of sunflower structural variation and the generation of new reference genomes,
revisiting earlier studies based on non-genomic data, and the optimization of
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transformation methods that can be used to validate the function of ecologically or
economically important genes.
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Genomics - Helianthus - Hybridization - Invasive species - Speciation - Sunflower

1 Introduction

In evolutionary biology, a few species and clades have become sufficiently well
studied so as to contribute to the advancement of multiple lines of research on the
genetics of speciation and adaptation. Some of these model systems such as the fruit
fly Drosophila melanogaster or the house mouse Mus musculus have been the focus
of genetic research since the turn of the twentieth century, shortly after the
rediscovery of Mendel’s laws of inheritance (Markow 2015; Phifer-Rixey and
Nachman 2015). The goal at this stage was to study classical genetics, often in
connection with development and physiology (Barr 2003). Since the 1950s, many
more model systems have been developed, mainly against a backdrop of molecular
and sequencing technology improvements. These advancements have allowed evo-
lutionists to choose study organisms not because they had short generation times and
were amendable to laboratory experiments, but because their natural history and
ecology permitted new questions to be asked about speciation and adaptation in
the wild.

The genus Helianthus is a notable example of one such model system. Commonly
known as sunflowers, these charismatic plants started to draw the attention of
evolutionists beginning in the 1940s and 1950s. This was largely due to experiments
performed by botanist and evolutionary biologist Charles B. Heiser Jr. Relying on
data from morphology, cytology, and crossing experiments, Heiser meticulously
documented the occurrence of hybridization between sunflower taxa (e.g., Heiser
1947, 1951). In a few years, he had amassed evidence for a sufficient number of
species to note, in his 1969 monograph of sunflowers, that “the discovery of another
interspecific hybrid combination in the genus would scarcely be noteworthy” (Heiser
et al. 1969, p. 23). At the time, by combining such experimental evidence with
ecological and geographical information, Heiser had contributed some of the most
compelling examples of natural introgressive hybridization (Heiser 1949). As such,
from the early years of the modern synthesis, sunflowers were part of the debate on
whether hybridization is a constructive or destructive force (Dobzhansky 1937;
Anderson and Stebbins 1954; Stebbins 1959).

Work performed since the 1990s has expanded Heiser’s work significantly. This
was achieved using a combination of approaches, including field experiments,
genetic and association mapping, and population genetics and genomics in natural
hybrid zones (e.g., Rieseberg et al. 1999a, 2003). As a result, sunflower research has
considerably added to our understanding of hybrid and non-hybrid speciation, as
well as evolution during domestication, evolution of invasiveness, and local
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adaptation. Here, we review these contributions, focusing on studies that use pop-
ulation genomics.

2 Helianthus Diversity and Origin

Helianthus comprises 49 named species, all of which are of North American origin
(Heiser et al. 1969; Schilling and Heiser 1981). The diversity captured by the genus
is remarkable and can be partitioned along multiple axes. One of these is ecology.
Members of the group can be found in environments as disparate as deserts, salt
marshes, prairies, rock outcrops, woodland understories, and wetlands (Fig. 1;
Heiser et al. 1969; Kantar et al. 2015). For a number of species, local adaptation to
these environments has been confirmed by field experiments and population geno-
mic analyses (see Sect. 4.3 below). A second axis of diversity involves reproductive
strategy. Specifically, 12 members of the genus are annuals, while the remainder are
perennials (Kantar et al. 2014). The annual/perennial distinction can have important
bearing on the tempo of speciation (e.g., the speed of hybrid sterility evolution;
Owens and Rieseberg 2014) as well as adaptation to local environments or domes-
tication (e.g., Gaut et al. 2015). We will discuss some of these aspects below.
Finally, a third major axis of diversity is ploidy level. While most species are diploid,
13 sunflower taxa are polyploids, including tetraploids and hexaploids (Kantar et al.
2014).

Efforts to understand how this diversity originated hinge upon accurate phyloge-
netic reconstruction. For Helianthus, recovering phylogenetic relationships has been
notoriously difficult. In retrospect, this is not surprising. Many of the characteristics
that make sunflowers an exceptional model system for evolutionary study are also
known to negatively impact phylogenetic inference. Such characteristics include
rapid speciation and recent origin, very large effective population sizes (Strasburg
etal. 2011), a high propensity to hybridize (Sambatti et al. 2012), recent proliferation
of repetitive elements (Staton et al. 2012), and multiple rounds of past
polyploidization (Barker et al. 2008; Badouin et al. 2017). Under these conditions,
it is easy to see why early attempts at phylogenetic reconstruction, drawing from
morphology, crossing data, phytochemistry, isozymes, or molecular marker genetic
data, were only partially informative.

Schilling and Heiser (1981) used morphology, reproductive strategy, and cross-
ability to infer the first phylogeny for the genus. Subsequent studies provided
additional key information, including the identification of Phoebanthus, a genus of
two perennial species that are narrowly distributed in Florida, as the sister group to
Helianthus (Schilling 2001). Also notable is the clarification that widespread diploid
annual species, including the important oilseed crop H. annuus, form a monophy-
letic clade (Schilling 2001; Timme et al. 2007). Finally, early phylogenetic studies
based on genetic data from ribosomal genes were able to identify three putative
instances of homoploid hybrid speciation (Rieseberg 1991), which will be discussed
below (see Sect. 3.1).
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Fig. 1 Representative Helianthus diversity. (a) H. anomalus, (b) dune ecotype of H. petiolaris ssp.
fallax. (¢, d) wild H. annuus. (e) H. argophyllus coastal ecotype. (f) cultivar of H. annuus. Images
courtesy of Nolan C. Kane, Mariana A. Pascual-Robles, and Jason Rick
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The use of next-generation sequencing has improved, over the past five years, our
understanding of infrageneric species relationships. Stephens et al. (2015) used
capture probes and Illumina sequencing to simultaneously isolate 170 phylogeneti-
cally informative loci across 37 diploid Helianthus. Results showed that most taxa
are part of three large clades, one of which contains annuals, and two of which
contain perennials. Also, this study provided evidence that the ancestral sunflower
was likely a perennial species, with annual life history evolving subsequently three
times (Stephens et al. 2015). This is in agreement with observations from other plant
taxa, which indicates annual species tend to evolve from perennial ancestors as an
adaptation to harsh environmental conditions, such as aridity (Friedman and Rubin
2015). The phylogeny from Stephens et al. (2015) was further used to provide
evidence that temperature seasonality constrains genome size expansion in
Helianthus (Qiu et al. 2019).

Low-coverage whole genome sequencing (i.e., genome skimming) and reduced-
representation sequencing have been used to disentangle any remaining ambiguous
relationships and revisit previously suspected hybrid species (e.g., Baute et al. 2016;
Owens et al. 2016; Zhang et al. 2019). Some of these studies focused on polyploid
hybrids. Because these taxa are also perennials, and therefore, fewer generations
removed from their progenitors, they have proven particularly difficult to resolve
using traditional phylogenetic markers. Information from complete cytoplasmic
genomes, as well as much of the rDNA nuclear segment was informative in two
cases so far, the hexaploid tuber crop H. tuberosus (Bock et al. 2014a), and the
critically endangered tetraploid H. schweinitzii (Anderson et al. 2019). Lastly,
notable among studies using genome skimming is Lee-Yaw et al. (2019). The
authors integrated phylogenetic methods and selection analyses to understand
drivers of discordance between nuclear and cytoplasmic markers. Cytonuclear
discordance has been a common finding in the plant literature and is usually ascribed
to incomplete lineage sorting or hybridization. Aside from confirming the occur-
rence of hybridization and subsequent cytoplasm introgression, results pointed to the
contribution of natural selection in driving patterns of plastid DNA variation. This
possibility has previously been supported using field experiments in sunflowers
(Sambatti et al. 2008) and is being considered increasingly often in other taxa as
well (Bock et al. 2014b).

Given what we know so far on sunflower phylogeny, what can we say about the
geography, timing, and tempo of Helianthus diversification? Considering that
Phoebanthus, the sister group to Helianthus, as well as basal sunflowers such as
H. porteri have a distribution that is restricted to the South-Eastern US (Schilling
2001; Stephens et al. 2015), it seems likely that the ancestor of Helianthus was a
perennial species of Central American origin. Further supporting this possibility is
the fact that sister-taxa to the clade formed by Helianthus and Phoebanthus occur in
Mexico and South America (Schilling 2001). Molecular clock analyses, while
inherently uncertain (Donoghue and Benton 2007), timed the split between the
first sunflower species and this ancestor at ~3.6 million years ago (Mason 2018).
This places the start of sunflower diversification within the Pliocene, a period
characterized by cooling, drying, and considerable vegetation restructuring in
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North America, including reductions of closed forest habitat (Mason 2018). This
makes sense considering that sunflowers typically occur in open-vegetation envi-
ronments (Heiser et al. 1969). Subsequent to range expansion from Central America,
diversification within North America led to the formation of three major clades. One
of these contains species that are more common in dry soils of the South-Western
US. Adaptations to these challenging environments likely included an annual repro-
ductive strategy, but also traits that enhance water use efficiency and promote fast
growth (Mason and Donovan 2015). Subsequent radiation from the South-Western
US occurred later for widespread members of this annual clade, such as H. petiolaris
(Heiser 1961). The other two ancestral Helianthus clades consist of perennials
occurring, respectively, in riparian habitats across the Central-Eastern US and
water-rich environments of the South-Eastern US. Speciation within all three clades
is recent (often <1-2 Myr; Stephens et al. 2015) and occurred in the context of
substantial interspecific gene flow (Sambatti et al. 2012; Lee-Yaw et al. 2019) and
genome rearrangements (Burke et al. 2004; Barb et al. 2014). We discuss studies
investigating these speciation events below.

3 Population Genomics of Sunflower Speciation

Sunflowers are well-known for their contribution to speciation theory. Building on
earlier research performed by Heiser (discussed above), species formation has been
studied extensively in this group, facilitated in part by its recent origin. This provides
the opportunity of studying speciation from taxa that are fully isolated to those that
are just transitioning to the status of incipient species (e.g., Andrew and Rieseberg
2013; Ostevik et al. 2016). Here, we follow this speciation continuum. After
introducing key previous results, we review population genomics studies of past
and ongoing sunflower speciation.

3.1 Sunflowers as Models of Recombinational Speciation

Students of evolutionary biology not familiar with sunflowers are most likely to be
introduced to this system in the context of homoploid hybrid or “recombinational”
speciation. This is because three sunflower species, H. anomalus, H. deserticola, and
H. paradoxus are thought to offer some of the strongest empirical support for this
mode of speciation (Yakimowski and Rieseberg 2014). Phylogenetic evidence
suggested that these taxa were of hybrid origin and that they likely share the same
two progenitors, the widespread annuals H. annuus and H. petiolaris (Rieseberg
1991). Molecular data further indicate these speciation events occurred rapidly,
likely within hundreds of generations (Ungerer et al. 1998; Buerkle and Rieseberg
2008). Despite their presumed hybrid origin, the hybrid neospecies are strongly
isolated from their progenitors, as both intrinsic (in the form of almost complete F
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hybrid sterility; Heiser 1958; Rieseberg 2000) and extrinsic (in the form of ecolog-
ical differentiation; Rieseberg 1991; Lexer et al. 2003) barriers to gene flow are
known. As predicted by the recombinational speciation model (Stebbins 1957; Grant
1958), the hybrids differ from parental taxa in multiple chromosomal rearrangements
(Rieseberg et al. 1995a; Lai et al. 2005) that are associated with F; sterility (Lai et al.
2005).

Ongoing work is using high-resolution linkage maps based on SNP data to study
chromosomal evolution in the genus. Results have so far highlighted that karyotype
changes in diploid sunflowers are dominated by inversions and interchromosomal
translocations (Ostevik et al. 2020). Among these, inversions predominate (Ostevik
et al. 2020). Also, when interpreting results across plant and animal groups, sun-
flowers appear to have exceptionally high rates of chromosomal evolution (Barb
et al. 2014; Ostevik et al. 2020). Non-random patterns have further been identified
across the genome, with some chromosomes involved in more translocations than
others. Leading explanations for this involve ancestral homology retained after
whole genome duplication, as well as repeat element content (Ostevik et al. 2020).

The relevance of chromosomal rearrangements is easy to see when one considers
intrinsic isolation during hybrid speciation. Previous studies have shown that hybrid
sterility is a result of either direct rearrangement effects or the effects of genic
incompatibilities that cluster within rearrangements (Lai et al. 2005). However,
this only addresses part of the barriers necessary for hybrid speciation. An important
remaining question is how might ecological isolation be achieved at the same time?
Theoretical studies indicate that, without niche divergence, hybrids can be
outcompeted by numerically superior parental genotypes (Buerkle et al. 2000). As
such, hybrid speciation requires the concomitant development of strong ecological
divergence (Buerkle et al. 2000).

Luckily, in hybrid sunflower species, ecological isolation can be studied directly.
This is because the putative parent taxa and hybrid derivatives are extant. As such,
field experiments can be conducted to compare all taxa and/or artificial hybrids,
therefore controlling for post-speciation divergence. This was the approach taken by
Lexer et al. (2003) to study mechanisms of ecological isolation in H. paradoxus. The
authors used interspecific BC, hybrids between H. annuus and H. petiolaris and
performed QTL mapping for survivorship and elemental uptake traits in salt
marshes, the environment typical of H. paradoxus. Results provided evidence for
strong selection at QTLs with effects in opposing directions. This was early support
for the possibility that rapid ecological divergence during hybrid speciation is
achieved as a result of selection for recombinants with extreme (transgressive)
phenotypes. The mechanistic basis for transgression in this case is complementary
gene action (Rieseberg et al. 1999b). Under this model, extreme phenotypes are a
product of the “stacking” of alleles from several QTLs that are fixed between
parents, and that control the same trait (reviewed in Rieseberg et al. 1999b).

The complementation model provides a convincing explanation for the emer-
gence of transgression and subsequent ecological isolation, but it is not the only
mechanism at play. Specifically, gene expression changes likely contribute as well.
Lai et al. (2006) used microarray analyses of H. deserticola and the two parental
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taxa. Results showed evidence of transgressive expression in the putative hybrid
species as compared to its parents, particularly involving transport-related genes (Lai
et al. 2006). These changes are not observed in F; H. annuus/H. petiolaris hybrids,
as estimated using RNA-seq (Rowe and Rieseberg 2013). Thus, current evidence
points to gene expression divergence occurring in later generations. Explanations
that have been put forth so far include mechanisms independent of the hybridization
event such as post-speciation selection, as well as those that are related to the
genome merger (Lai et al. 2006). Among this latter category, possibilities include
genome rearrangements and transposable element activity (Lai et al. 2006), both of
which are elevated in the hybrid sunflower taxa (Renaut et al. 2014a) and have been
linked to gene expression divergence (Lai et al. 2006; Dion-Cote et al. 2014;
Harewood and Fraser 2014).

3.2 Non-hybrid Speciation

While a substantial share of speciation research in sunflowers has focused on
understanding mechanisms behind homoploid hybrid species formation, studies of
non-hybrid taxa have been extremely insightful as well. These studies sought to
understand patterns of introgression along the genome and to document the nature of
sunflower species boundaries. These investigations have been facilitated by several
characteristics of the sunflower system. For one, detailed information is available on
reproductive isolating barriers for some members of the group (e.g., flowering time,
pollen competition, hybrid sterility; Rieseberg et al. 1995b; Rieseberg 2000;
Sambatti et al. 2012). Using knowledge of barrier strength, estimates can be obtained
on the probability of hybridization, which can then be related to genome scans for
differentiation between species (e.g., Sambatti et al. 2012). Also, exceptional
resources for studying the population genomics of speciation are available in
Helianthus. These include large EST databases, SNP and expression arrays, high-
density genetic maps, and reference genomes (Heesacker et al. 2008; Kane et al.
2013; Badouin et al. 2017; Hiibner et al. 2019). Finally, because of the widespread
distribution of sunflowers across continental US, contrasts can be made among
species pairs that differ in the potential for gene flow. This permits the study of the
geographical context of speciation (e.g., Renaut et al. 2013).

An important finding emerging from these studies is that sunflower genomes
often are mosaics, with a considerable genomic fraction having an interspecific
origin (Kane et al. 2009; Scascitelli et al. 2010; Sambatti et al. 2012; Zhang et al.
2019). This occurs even in species for which interbreeding is rare and prevented by
the compounded action of multiple isolating mechanisms. For example, studies of
H. annuus and H. petiolaris have estimated a cumulative barrier close to 1 in both
directions (Sambatti et al. 2012), placing these species at the upper end of barrier
strength among flowering plants (Lowry et al. 2008). Using widely accepted criteria,
these would be considered good species. The intuitive prediction in this case is that
extremely rare hybridization translates into strong genetic differentiation between
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taxa. To the contrary, population genomics has provided evidence of
non-independence for the two gene pools. For example, Kane et al. (2009) used
26 microsatellites and 1420 EST-derived orthologs and identified long-term gene
flow between nearby populations of H. annuus and H. petiolaris. This added to
previous, more localized examples of genetic exchange between the two species
(e.g., Buerkle and Rieseberg 2001; Yatabe et al. 2007).

To reconcile these apparently conflicting results, Sambatti et al. (2012) used
coalescent modelling. Results pointed to the large effective population size of
these two species as the primary reason for gene flow evidence, even when success-
ful hybridization is extremely rare. Under this scenario, the traces of past introgres-
sion are preserved because of very limited genetic drift. Also notable is that the
genomic mosaic observed in this case is not merely a result of the recent origin of
H. annuus and H. petiolaris, as revealed by comparisons of even younger speciation
events (Sambatti et al. 2012). Beyond documenting the lasting contribution of gene
flow to genomic variation in sunflowers, these studies highlighted the important role
of ecology in maintaining sunflower species cohesion. In spite of widespread genetic
exchange, most species are known to maintain distinctive morphologies and habitat
requirements (Kane et al. 2009). Conversely, in the absence of habitat differentiation
and under human disturbance or biological invasion, hybridization can be rampant,
and even result in the genetic assimilation of species (Kane et al. 2009; Todesco et al.
2016; but see Owens et al. 2016).

If, as discussed above, gene flow has been occurring between H. annuus and
H. petiolaris throughout their evolutionary history, how has this shaped the genomic
landscape of divergence? In sympatry and parapatry, the genomic landscape is
predicted to be highly heterogenous (Nosil et al. 2009). Peaks of differentiation
associated with loci under divergent natural selection are expected to be interspersed
by valleys of differentiation corresponding to neutral regions that are being homog-
enized by gene flow. This contrasts with the expectation in allopatry, where the
absence of gene flow should allow neutral and adaptive divergence to accumulate
anywhere in the genome (Nosil et al. 2009). Identifying determinants of the genomic
landscape of differentiation can contribute to our understanding of speciation. For
example, some models of speciation with gene flow predict that initially narrow
peaks of differentiation will progressively expand and facilitate divergence of other
linked genes (Via 2012). Referred to as “divergence hitchhiking” this process is
thought to ultimately lead to the formation of the so-called speciation islands during
speciation with gene flow (Via 2012).

To test these predictions in sunflowers, Renaut et al. (2013) used transcriptome
data and pairs of taxa that differ in the geography of speciation. These consisted of
H. annuus and H. petiolaris as representatives of sympatric divergence with gene
flow. By considering two other taxa, H. debilis and H. argophyllus, additional
comparisons could be made, representing parapatry with and without gene flow,
and allopatry (Renaut et al. 2013). Contrary to expectations, the genomic landscape
of divergence was not affected by interspecific gene flow. Regardless of sympatric,
parapatric, or allopatric categorization, species were found to diverge at numerous
independent genomic regions (Renaut et al. 2013). These results notwithstanding,
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Fig. 2 Population genomics of incipient speciation in Great Sand Dunes (GSD) H. petiolaris. (a)
Divergence time among GSD H. petiolaris dune and non-dune ecotypes, as compared to divergence
times among two sunflower species pairs for which reproductive isolation has previously been
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there was a strong association between islands of divergence and recombination rate.
Thus, the study by Renaut et al. (2013) highlighted that, in sunflower species, the
functional architecture of the genome, as opposed to gene flow, is a strong predictor
of genome divergence (Renaut et al. 2013).

3.3 Sunflower Speciation in Action

Studies of past speciation such as those highlighted above help us understand the
process retrospectively: we look back in time and make inferences based on the best
available evidence (Via 2009). Ideally, however, we would also observe speciation
in action. This is because studies of incipient species can provide valuable informa-
tion on how gene flow is initially suppressed. Combining the two approaches is
possible in sunflowers, since genotypes can be obtained that span the continuum
from well-isolated taxa (above) to young ecotypes just transitioning to species status.
A well-established system for the study of incipient speciation in Helianthus are the
dune and non-dune ecotypes of H. petiolaris at Great Sand Dunes (GSD) National
Park in Colorado (Fig. 2). This is due to a succession of studies that provided
detailed information on the evolutionary history of the two ecotypes, reproductive
barriers and genomic divergence.

Population genomic data indicate that dune-adapted H. petiolaris diverged from
an ancestral non-dune population at GSD less than 10,000 years ago (Fig. 2a;
Andrew et al. 2013). While gene flow is still occurring (Andrew et al. 2012,
2013), dune and non-dune ecotypes are locally adapted and maintain large diver-
gence at key traits including seed size (Fig. 2b; Ostevik et al. 2016). In line with
these observations, analyses of reproductive isolation identified several reproductive
barriers that are already active in this system (Fig. 2c¢; Ostevik et al. 2016). As
expected under local adaptation and recent divergence, many barriers were extrinsic.
These included both prezygotic (selection against immigrants; divergence in polli-
nator assemblages) and postzygotic (selection against hybrids; Ostevik et al. 2016)
barriers. One intrinsic barrier was identified as well (postpollination assortative
mating, Ostevik et al. 2016). Comparisons of barrier strength revealed that, in the

<
Y

Fig. 2 (continued) investigated (e.g., using F; pollen sterility; see Owens and Rieseberg 2014).
Divergence estimates are obtained from Andrew et al. (2013) for GSD and from Mason (2018) for
the other two comparisons. (b) Representative plants of the non-dune and dune H. petiolaris
ecotypes, in their respective habitats at GSD, Colorado. Scale bar for seed size indicates 1 mm.
Photo credits Kate L. Ostevik (left GSD image), Rose L. Andrew (right GSD image), and Marco
Todesco (seed images). (c) Barrier strength estimates considering gene flow from non-dune to dune
plants, modified from Ostevik et al. (2016). Barriers for which seed size is likely to contribute are
highlighted in black. (d) Fst comparison between dune and non-dune ecotypes (from Huang et al.
2020). Blue bars are used to indicate the genomic location of seed-size QTLs (as identified in
Todesco et al. 2020). Red bars indicate putative inversions
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case of H. petiolaris at GSD, postzygotic barriers are more effective than prezygotic
barriers. As well, extrinsic barriers were shown to be more effective than intrinsic
barriers.

How do these barriers impact genome divergence, and how did they evolve?
Between-ecotype genome scans identified three major “islands of divergence”
against a backdrop of otherwise reduced genomic differentiation (Andrew and
Rieseberg 2013). This result further confirmed that the two ecotypes are at the
very early stages of speciation, when only a small fraction of the genome is
contributing to isolation (Andrew and Rieseberg 2013). While few, the islands of
divergence were wide, likely encompassing a large number of genes (Andrew and
Rieseberg 2013). Thus, as compared to the substantially older H. annuus/
H. petiolaris species pair discussed above, the GSD ecotypes better correspond to
expectations under “divergence hitchhiking.”

An alternative that can explain the large islands of divergence between these
ecotypes is the occurrence of chromosomal inversions. Recent studies have increas-
ingly emphasized that structural polymorphism is an important component of adap-
tive genetic variation (Mérot et al. 2020; Todesco et al. 2020). A follow-up study of
the GSD system provided strong evidence for precisely this scenario. Using RADseq
and analytical methods that facilitate inversion detection, Huang et al. (2020)
demonstrated that islands of divergence between H. petiolaris ecotypes do indeed
correspond to chromosomal inversions (Fig. 2d). Moreover, these inversions were
shown to co-localize with seed-size QTLs (Fig. 2d), as well as environmental
variables that differ between dune and non-dune sites (Huang et al. 2020). Thus,
in GSD H. petiolaris, inversions contribute to divergent adaptation by preventing
recombination between co-adapted alleles. Ongoing work is aiming to clarify
whether postpollination assortative mating also maps to these inversions (Huang
et al. 2020). This is particularly relevant because models of speciation with gene flow
emphasize the importance of linkage between loci involved in local adaptation and
those involved in assortative mating (Ortiz-Barrientos et al. 2016; Huang and
Rieseberg 2020).

4 Population Genomics of Adaptation

The spectacular diversity of Helianthus has motivated a number of studies on the
genetics of adaptation. Understanding how sunflowers cope with the local environ-
ment is relevant for both basic and applied reasons. First, ecological divergence is a
major component of sunflower speciation. Thus, understanding local adaptation will
provide a window into microevolutionary dynamics at the foundation of species
diversity in the genus. Second, Helianthus contains two crops, the oilseed H. annuus
and the tuber crop H. fuberosus. Thus, studies can be conducted to understand
adaptation during domestication. Even more so, studies of adaptation can help
identify genetic resources for breeding stress-resistant cultivars, which is relevant
from the perspective of food security under climate change (e.g., Gao et al. 2019).
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Lastly, H. annuus and H. tuberosus contain widespread invasive ecotypes. Thus,
these species also allow us to understand evolutionary mechanisms of invasion
success.

4.1 Evolution During Domestication

Not only have sunflowers been a model for understanding speciation, they have also
been instrumental for understanding evolution under domestication, largely due to
work on the oilseed crop H. annuus. Key topics that have been addressed include the
geographic origin(s) of crops in the Americas, the speed of evolutionary change
under domestication, and the genetic mechanisms that drive these changes (Burke
et al. 2002; Harter et al. 2004). Despite this, there was still controversy about the
origin of the domesticated sunflower as recently as the early twenty-first century
(Lentz et al. 2008; Rieseberg and Burke 2008). However, this debate has been settled
using analyses of candidate domestication genes (Blackman et al. 2011a). More
recently, shotgun sequencing of archeological DNA contributed as well (Wales et al.
2019). These studies have clarified that extant domestic sunflower has a single
origin, which occurred around 4,000 years ago in Eastern North America.

Genetics and genomics research over the past two decades has made clear that
phenotypic transitions during domestication can be the result of a wide range of
mutations (Purugganan 2019). The most common type is a non-synonymous single
nucleotide polymorphism. In sunflower, a prime example of this are the flowering
time genes. For example, the sunflower HaFTI locus, a homolog of a known
flowering time regulator, contains a frameshift single nucleotide polymorphism
that differentiates wild and domestic H. annuus (Blackman et al. 2010). Sequence
analyses of the exon containing this frameshift have confirmed that HaFTI has been
under selection in landrace and elite lines, while evolving neutrally in wild
populations (Blackman et al. 2010). Other domestication traits mapped in sunflower
include plant architecture and fatty acid synthesis (Wills and Burke 2007; Chapman
and Burke 2012). These studies relied on linkage mapping, association mapping, and
Fsr outlier scans to identify well over 100 candidate domestication genes (Burke
et al. 2002; Wills and Burke 2007; Chapman et al. 2008; Mandel et al. 2013; Baute
et al. 2015). While this contrasts with observations from other crops in terms of the
number of inferred domestication loci, a polygenic signature of domestication is
becoming more commonly observed with more widespread use of genomic data
(Chen et al. 2020).

Not only were specific genes altered during sunflower domestication, but
genome-wide patterns of polymorphism were changed as well. For example, com-
parisons between wild and domesticated H. annuus revealed differences in the
content of transposable elements (Mascagni et al. 2015). Also, there have been
significant changes in RNA-splicing (Smith et al. 2018). Another transition with
genome-wide consequences was the incorporation of a hybrid breeding system,
which occurred in the 1970s (Fick and Swallers 1972). This resulted in gene content
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changes among heterotic groups, including genes involved in pathogen defense
(Owens et al. 2019). Heterosis likely resulting from complementation contributed
to large yield increases (Owens et al. 2019). This is relevant because, like many other
domesticated species (Gaut et al. 2015), sunflower has gone through a bottleneck
with genetic diversity being significantly reduced in cultivated lines (Liu and Burke
2006; Wales et al. 2019; Park and Burke 2020). In agreement with this observation,
cultivated sunflower genomes were shown to contain more deleterious mutations
than wild genomes (Renaut and Rieseberg 2015). However, deleterious polymor-
phisms currently present in the domestic sunflower gene pool will be challenging to
remove because they have accumulated predominately in low-recombination regions
(Renaut and Rieseberg 2015).

Following the development of the hybrid breeding system, improvement of
domestic sunflower lines also relied on the introduction of genetic material from
wild congeners (Baute et al. 2015). Population genomic analyses have helped reveal
the genomic extent and the phenotypic consequences of these introgressions. Baute
et al. (2015), for example, used transcriptome sequencing to show that introgressed
regions account for ~10% of the genome in cultivated sunflower. All modern
cultivars examined were found to contain one or more introgression-derived geno-
mic regions (Baute et al. 2015). Hiibner et al. (2019) further expanded these results in
an analysis of the sunflower pangenome. Results reiterated that approximately 10%
of the genome, and 1.5% of genes, originated via introgression. Genes involved in
biotic resistance were over-represented among those found in introgressed regions.
This was confirmed using a GWAS analysis for downy mildew (Plasmopara
halstedii) resistance, which identified several strong associations that overlap with
introgressions from wild species (Hiibner et al. 2019).

Understanding the way evolution has changed species under domestication pro-
vides new ways to quickly select and develop additional domesticates. For example,
known domestication genes represent excellent targets of selection and can help
define expectations for breeding programs. A new area of interest in domestication
research involves comparative analyses of annual and perennial crops (Gaut et al.
2015). Helianthus provides research opportunities in this direction, given that it
contains both an annual domesticate (H. annuus) and a less well-studied perennial
domesticate (H. tuberosus; Kantar et al. 2014). Further, there is much interest in
domesticating new species to make agricultural systems more sustainable. The
Helianthus genus provides key species in this endeavor as well (Asselin et al.
2020). We, therefore, anticipate that sunflowers will continue to be important to
our understanding of how plants interact with human society, and how this relation-
ship can be improved as more genomic knowledge is gained.

4.2 Evolution of Invasiveness

When considering problematic plants, a distinction can be made between agricul-
tural weeds and invasive species. While admittedly blurry and rarely used, this
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classification is based on the environment in which the plants typically occur. At one
extreme, agricultural weeds are found in highly managed environments, such as
cultivated croplands. At the other extreme, invasive species often spread in more
natural communities that are minimally altered by human activity (Ellstrand et al.
2010). Aside from this distinction, agricultural weeds and invasive species are
similar in many respects. For example, both are known to adapt rapidly in response
to novel challenges they encounter. Agricultural weeds rely on adaptations, such as
rapid growth, herbicide resistance (Baucom 2019), or crop mimicry (Barrett 1983) to
thrive under the unique conditions resulting from cultivation. These include high
availability of water and fertilizer, but also targeted removal. Invasive species as well
have been shown to respond adaptively to a host of conditions including novel
climates (Colautti and Barrett 2013) and reduced competition in empty niches
(Dlugosch et al. 2015). Other shared commonalities include the occurrence of
hybridization, reduced population size, and serial founder events (Bock et al.
2015; Hodgins et al. 2018). Helianthus contains two well-known representatives
for both categories, the H. annuus agricultural weed and the H. fuberosus invasive
species. We discuss below how population genomics studies in these taxa have
contributed to our understanding of invasiveness in agricultural and natural settings.

The H. annuus agricultural weed is common in croplands throughout North
America and Europe, where it can have a large economic impact (e.g., Deines
et al. 2004). It achieves a patchier distribution in Australia and in Argentina,
where it is more often found as a ruderal plant (Presotto et al. 2017). Population
genetic and genomic analyses have indicated that weedy H. annuus has a diverse
origin. This includes multiple derivations from nearby wild populations in North
America (Kane and Rieseberg 2008), intraspecific crop-wild hybrid origins in
Europe (Muller et al. 2011), and a mixture of wild and interspecific | hybrid origins
involving crosses with H. petiolaris in Argentina (Mondon et al. 2018). Common
garden and drought experiments conducted using North American, Australian, and
Argentinian genotypes have highlighted that, relative to wild H. annuus, weedy
forms have evolved faster growth at the expense of reduced drought tolerance
(Mayrose et al. 2011; Koziol et al. 2012; Presotto et al. 2017).

The genetic basis of wild to weedy transition has been investigated for North
American H. annuus. This was done using genome scans for selection based on
106 EST-derived microsatellites (Kane and Rieseberg 2008) and using microarray-
based gene expression analyses (Lai et al. 2008). These studies have highlighted that
weediness in this system was likely achieved via changes at a small genomic
fraction. Kane and Rieseberg (2008) reported evidence of selection at 0.9-5.6% of
loci examined. Likewise, Lai et al. (2008) found evidence for significant gene
expression differences at 5% of the genes investigated. Moreover, both studies
identified limited overlap in outlier loci among weedy populations, thus indicating
weediness is easy to evolve in sunflowers, and can have a diverse genetic basis
(Kane and Rieseberg 2008). Ongoing work is attempting to expand on these results
using whole genome resequencing (Drummond 2018). While comparisons of wild
H. annuus with independently derived weedy genotypes did reveal some evidence of
parallel genetic differentiation, the relative contribution of idiosyncratic changes
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could not be assessed at this point. Even so, preliminary results have reiterated that
the transition to weediness likely involved a small fraction of the genome (<1%;
Drummond 2018). Also, outlier regions contained genes associated with a variety of
functions, as expected given that wild and weedy sunflowers diverge in multiple
traits. These candidate weediness genes are associated with abiotic and biotic stress
response, as well as herbicide tolerance (Drummond 2018).

In contrast to H. annuus, invasive genotypes of H. tuberosus are more often found
in natural habitats (Fig. 3a). In Europe, where this perennial sunflower is considered
a highly invasive species, populations frequently occur in nutrient- and water-rich
soils along river courses (Descombes et al. 2016). A recent study investigated
evolution of invasiveness in this system (Bock et al. 2018). Genome-wide SNP
data showed that invasive genotypes have a diverse origin: some derive directly from
wild accessions, whereas others are wild-domesticated hybrids (Fig. 3c). Common
garden results further showed that invasive genotypes invest more in growth.
Specifically, invasive plants were found to produce roughly twice the number of
vegetative propagules (tubers) that wild and domesticated plants would typically
make (Fig. 3b). Moreover, vegetative propagation was shown to be the primary
driver of invasive spread in this species. A drought experiment further revealed that
increased investment in vegetative propagation is manifested only when water
resources are not limiting (Fig. 3a). This result has two implications. First, it
shows that invasiveness in H. tuberosus evolved by genetic accommodation, via
adaptive evolution of phenotypic plasticity. Second, it highlights that invasive
H. tuberosus, similar to weedy H. annuus, has adapted to exploit a resource-rich
environment in areas of spread. Lastly, association mapping analyses showed that
invasive lineages differ in the genetic basis of invasiveness. Namely, two
non-exclusive genetic mechanisms were shown to contribute to invasive spread:
hybrid vigor and two large-effect QTLs (Fig. 3d; Bock et al. 2018). This result, thus,
further strengthens the conclusion that several genetic routes to invasiveness are
available in weedy and invasive sunflower populations.

Are results from sunflowers indicative of mechanisms for invasion success likely
to be at play in other systems? Recent years have seen an acceleration of research on
evolutionary drivers of invasiveness, implementing genomics and field experiments.
As such, some preliminary generalizations can be made. For one, it seems likely that
increased virulence of introduced genotypes can evolve easily and will have a
diverse genetic basis. This is supported by genomic analyses in other taxonomic

<
«

Fig. 3 (continued) under water-stress and well-watered conditions. (b) Tuber yield from wild,
invasive, and cultivated genotypes. (¢) Maximum-likelihood phylogeny of H. tuberosus, including
wild (blue), invasive (red), and cultivated (orange) genotypes. Invasive populations have at least
four distinct origins. (d) For three origins with available phenotype data, means ( & s.e.m.) are given
for tuber number, the main invasiveness trait in this system, in invasive genotypes (red) and closely
related non-invasive samples (white). Dotted line shows the mean across the collection. For each
origin, inferred genetic mechanisms of invasiveness (i.e., hybrid vigor and/or invasiveness QTLs)
are given
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groups. For example, Hodgins et al. (2015) traced the signature of natural selection
in 35 Asteraceae species, including six major invasive species. Results provided
limited evidence for parallel changes in orthologous genes (Hodgins et al. 2015).
Concordant results have also been obtained with regard to phenotypic and physio-
logical changes that occur during invasions. Specifically, invasive genotypes have
frequently been found to display superior growth under high-resource conditions,
but reduced tolerance to abiotic stress. Thus, invasiveness appears to frequently
evolve in resource-rich habitats (Hodgins et al. 2018). Such invasion-prone envi-
ronments may be a result of changes in community structure, including historical
declines of competitors (e.g., Dlugosch et al. 2015).

4.3 Local Adaptation with Gene Flow

How does local adaptation originate and persist when gene flow is occurring?
Traditionally, gene flow has often been viewed as a disruptor of local adaptation
(Tigano and Friesen 2016). This is because, when genetic exchange is rampant,
alleles that confer an advantage in the local environment can be swamped by foreign
variants. Under this scenario, even if locally suboptimal, alleles with the best fitness
across populations will tend to become fixed, and local adaptation will be lost
(Lenormand 2002). Modelling studies indicate that the likelihood of such swamping
depends on the intensity of gene flow and selection (Tigano and Friesen 2016).
Recently, examples of local adaptation with gene flow have become more common,
facilitated by genomics tools that allow the topic to be studied in any organism
(Tigano and Friesen 2016). As such, there has been a renewed interest in under-
standing the destructive as well as constructive roles of gene flow during local
adaptation. This is particularly relevant in sunflowers, because of the high propensity
for gene flow that is characteristic of the genus.

That sunflower populations are locally adapted has been supported by multiple
studies using field experiments, population genomics, or a combination of these
approaches. Field experiments have used reciprocal transplants, often highlighting
photoperiod and soil characteristics such as water and nutrient content as impor-
tant components of local adaptation in sunflowers (e.g., Sambatti et al. 2008;
Whitney et al. 2010; Ostevik et al. 2016). Population genomic screens have
searched for the signature of natural selection. The goal in this case was to
characterize adaptive evolution from the perspective of types of genomic changes
(Moyers and Rieseberg 2013), the number and types of genes (e.g., Kane et al.
2011; Renaut et al. 2012; McAssey et al. 2016), or the contribution of genomic
landscape (e.g., Renaut et al. 2014b). Lastly, studies using a combination of the
two have aimed to clarify the occurrence of local adaptation using comparisons of
quantitative trait vs. neutral genetic differentiation (e.g., Blackman et al. 2011b;
Moyers and Rieseberg 2016).

While local adaptation is frequent in sunflowers, how is it achieved given
widespread gene flow? A recent study by Todesco et al. (2020) addressed this
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question. Three species were considered, each containing pairs of locally adapted
ecotypes that are well within gene flow contact. For H. annuus, sampling covered
typical populations found throughout the US, often adapted to mesic soils. Addi-
tionally, populations of H. annuus subsp. texanus were used, which are adapted to
sites with increased temperature and pathogen pressure in Texas (Whitney et al.
2010). For H. petiolaris, the study included dune and non-dune ecotypes that
evolved independently in both Texas and Colorado (Ostevik et al. 2016). Finally,
for H. argophyllus, sampling covered southern Texas early and late flowering
ecotypes. These are differentially adapted to coastal barrier islands (early flowering
ecotype) and mainland sites (late flowering ecotype; Fig. 4a; Moyers and Rieseberg
2016). In all, whole genome resequencing data for 1,506 genotypes was used in
combination with an extensive developmental, morphological, and environmental
dataset.

One of the most striking results was that many of the traits and environmental
variables known to be involved in local adaptation in these ecotypes mapped to large
chromosomal blocks of high linkage disequilibrium (Todesco et al. 2020). More-
over, many of these chromosomal blocks were found to control multiple traits. For
example, in H. argophyllus, flowering time as well as leaf nitrogen and carbon
content was associated with a 30 Mb region containing two main haplotypes
(Fig. 4b—d). Plants with different haplotypes at this region flowered on average
77 days apart (Fig. 4f). Additional analyses confirmed that a large fraction of these
plateaus of association correspond to structural variants, represented by inversions
and more complex rearrangements. Analyses of the 1,506 genomes further revealed
that structural variation is common across the three sunflower species, representing
4-16% of the genome (Todesco et al. 2020). Perhaps equally striking, the divergence
times between haplotype blocks was found to exceed the inferred age of the species
in which they currently segregate. This suggests some of the haplotype blocks
currently contributing to local adaptation in sunflowers may be a result of introgres-
sion from older, currently extinct taxa (Todesco et al. 2020).

Aside from clarifying the genetic basis of several adaptive traits, results from this
study contributed to our understanding of adaptation with gene flow in at least two
important ways. For one, it supports previous theoretical work (Yeaman and
Whitlock 2011) indicating that gene flow shapes the genetic architecture of local
adaptation. In cases when adaptation occurs with interpopulation genetic exchange,
selection will favor modular architectures such as those observed in sunflowers. This
is because recombination modifiers including chromosomal inversions prevent the
breakup of adaptive allele combinations. At the same time, Todesco et al. (2020)
highlight that gene flow can facilitate local adaptation via adaptive introgression.
This is supported by the finding that haplotype blocks acting as large-effect loci that
control multiple adaptive traits can have an interspecific origin (Fig. 4g). This result
thus further reinforces the constructive effect of hybridization for biodiversity, a
finding that is becoming more and more common as new taxa are being investigated
(Tigano and Friesen 2016).



D. G. Bock et al.

H. argophyllus common garden

E
Inland Coastal-island 30Chr- 6 genotype
[Jo/0
5 mo/1
an
29 {antonio min
< o0
Q
B 28 %c')_lrpus »
-(_% shrisii-
-
| g
26
-98 -97
B Longitude ()
90- G

~log,o(P value)
w O

o O O

P

1t 2 83 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Chromosome
Cc
g 90 13?Mb;1 . 150 Mbp F
g 60 . %
o
= 30 ; g
g o - ! 2100-
! .
Chr. 6 GWAS peak *g 50- L
= ..
o 0t——+
D 0/0 0/1 1/1 ann
Genotype
“ 0/0
£ | — ® 01
5| — @ 1/1
HaFT5 HaFT6 HaFT2 HaFT3  HaFT1 H. annuus
@ H. argophyllus
Chr. 6 GWAS peak
(unique haplotypes) *

\ Late
0.1

Fig. 4 Population genomics of local adaptation in H. argophyllus (modified from Todesco et al.
2020). (a) H. argophyllus inland and coastal-island plants grown in a common garden (photo credit
Brook T. Moyers). (b) Flowering time GWAS results. (¢) Close-up of the chromosome 6 region
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4.4 Crop-Wild Gene Flow

In addition to genetic exchange among differentially adapted wild populations, gene
flow has been documented between the domesticated sunflower, which is adapted to
cultivation, and wild or weedy populations of H. annuus and H. petiolaris (Linder
et al. 1998; Rieseberg et al. 1999¢; Muller et al. 2011; Mondon et al. 2018). When
the crop is abundant, such gene flow has the potential to reduce the fitness of
adjacent wild populations (Ellstrand and Rieseberg 2016). Conversely, some crop
traits such as resistance to herbicides or pests could enhance weediness (Snow et al.
2003).

While most studies of crop-wild gene flow in sunflowers have employed a
relatively small number of molecular markers, two recent studies provide genome-
wide estimates of hybridization and introgression (Corbi et al. 2017; Mondon et al.
2018). In the latter study, Mondon et al. (2018) confirmed the presence of hybrid-
ization and introgression between domesticated sunflower (H. annuus) and
H. petiolaris populations in Argentina, despite the strong reproductive barrier
between these species (Sambatti et al. 2012). However, it remains unclear whether
hybridization is causative or incidental to the weedy life history traits found in
Argentinian H. petiolaris. Corbi et al. (2017) tracked genome-wide allele frequency
shifts in an experimentally synthesized crop x wild sunflower population, which
was planted at two natural sites and allowed to evolve for two generations. As
expected, most crop alleles were selected against, but a handful were favored. Allelic
frequency changes were not closely correlated with shifts in phenotype, possibly
suggesting that crop alleles that complemented deleterious alleles were favored
rather than a particular phenotype per se.

5 Conclusions and Future Directions

As outlined in the introduction, sunflowers have emerged as a useful experimental
model for addressing a wide range of evolutionary questions. Most importantly,
studies of wild sunflower species have been key to establishing hybridization as a
creative force in evolution, facilitating adaptation, and leading to the formation of
new species (Rieseberg et al. 2007). Beyond hybridization, sunflowers are unusual
in their high rate of chromosomal structural evolution, and studies of wild sunflowers
have shown how large structural variants such as chromosomal inversions permit
adaptive divergence and speciation in the presence of gene flow (Barb et al. 2014;
Huang et al. 2020). Recently, these two previously disparate research themes have
been merged with the discovery that polymorphic structural variants segregating in
natural populations are often themselves the product of hybridization and introgres-
sion (Todesco et al. 2020).

While many of the large structural variants segregating in sunflower populations
have been shown to be inversions, others are more complex, possibly representing
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nested inversions and/or large deletions (Todesco et al. 2020). Also, the comparative
genetic mapping and population genomics approaches used to detect structural
variation are biased towards detecting large (>1 Mb) structural variants. An impor-
tant goal of the sunflower community going forward should be to better characterize
structural variation in cultivated and wild sunflowers. This will be most efficiently
accomplished by generation of reference genomes for all wild sunflower species,
focusing initially on the close relatives of the domesticated sunflower and then
expanding to the perennials. Such an effort is currently underway, led by the
International Consortium on Sunflower Genomics (https://www.heliagene.org/
ICSG/). Concomitantly, Hi-C sequencing and Bionano genome mapping of struc-
tural variants will be useful to fill in the gaps between reference sequences, as well to
infer whether variants represent fixed differences or are segregating within
populations or species. Of equal importance will be follow-up studies that attempt
to link the structural variants with ecologically important phenotypic traits, climate
variables, or soil characteristics.

Beyond generation of new reference sequences, the time has come to revisit well-
studied examples of adaptive introgression and hybrid speciation in the sunflower
system. Many of these examples were first developed based on cytogenetic and
morphological data (e.g., Heiser 1947, 1949, 1951), followed by gene tree analyses
(e.g., Rieseberg et al. 1988) and low-resolution comparative genetic mapping (e.g.,
Rieseberg et al. 1995a). Phylogenomic analyses offer a means to re-examine, enrich,
and potentially re-interpret results from these earlier studies (e.g., Owens et al.
2016).

In addition to the wild species, the sunflower genus is blessed with two different
crops, one annual (domesticated sunflower) and one perennial (Jerusalem artichoke).
Thus, the genus can offer insights into the genetics of domestication and improve-
ment, while permitting a contrast between annual and perennial crops. As with the
wild species, arguably the most distinctive feature of the domestication and improve-
ment process in Helianthus is hybridization. The cultivated sunflower genome is a
mosaic, with introgressions from half a dozen different wild species (Hiibner et al.
2019). These introgressions often lack genes that are present in wild H. annuus,
potentially contributing to linkage drag (Owens et al. 2019). The Jerusalem artichoke
is an allohexaploid, with its genome derived via hybridization between diploid
Sawtooth Sunflower and tetraploid Hairy Sunflower (Bock et al. 2014a). Hybridi-
zation between domesticated and wild Jerusalem artichoke also appears to have
played a non-exclusive role in the origin of invasive Jerusalem artichoke (Bock et al.
2018).

As with the wild species, a priority of research going forward should be a
reference sequence for Jerusalem artichoke, as well as additional references for the
domesticated sunflower. The reference sequences not only provide a means for
detecting and characterizing structural variants, but they are also critical for identi-
fying candidate genes underlying domestication or invasiveness traits. Given that
>25% of sunflower genes exhibit presence/absence variation among domesticated
lines (Hiibner et al. 2019), the availability of reference genomes from diverse
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cultivated lines increases the likelihood that a targeted gene will be present in at least
one of them.

Despite successes from population genomic analyses of wild and cultivated
Helianthus, there are some notable challenges to using sunflowers as an evolutionary
or ecological study system. One such challenge is genome size. Sunflower’s 3.6 Gb
genome is 7.9x the size of the rice genome and 27x the size of the Arabidopsis
genome. Thus, the recent study by Todesco et al. (2020), which reported on the
sequencing of 1,506 sunflower genomes, would be equivalent to sequencing circa
12,000 rice genomes and 41,000 Arabidopsis genomes! The differential is even
greater for Jerusalem artichoke’s 10.9 Gb genome. Because the vast majority of the
sunflower genome is made up of highly repetitive transposable elements, Todesco
et al. (2020) employed a repeat depletion protocol to reduce the fraction of repetitive
sequence by about 3-fold. Such an approach offers the advantage of reducing total
sequencing costs while retaining all low copy regions of the genome.

An even greater challenge is sunflower’s recalcitrance to transformation, which
makes it difficult to validate the function of ecologically and/or agriculturally
important candidate genes. Thus, sunflower biologists often rely on heterologous
transformation in Arabidopsis to explore the phenotypic effects of sunflower alleles
(Blackman et al. 2010; Todesco et al. 2020). While the approach works well for
genes with phenotypes that can be assayed in Arabidopsis, it may not be reliable for
traits which do not exist in Arabidopsis or whose expression is highly dependent on
genetic background. Thus, a clear imperative for the sunflower community is to
develop facile transformation and gene editing protocols. Until such methods exist,
sunflowers will fail to achieve their potential as an ecological or evolutionary model.
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